UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

Cs 739 Michael Swift

Distributed Systems Notes (c) Andrea C. Arpaci-Dusseau

Byzantine Generals

One paper:

* “The Byzantine Generals Problem”, by Lamport,
Shostak, Pease, In ACM Transactions on Programing
Languages and Systems, July 1982

Notes from Reviews

* Key lesson: give your problems good stories to be famous
* Byz Gen:
— Scalability: how bad is it? If 4 nodes, one failure, have 6 messages.
— What is general model of computation?
« Think replicated state machine, want all doing the same thing
* PBFT
— How bad is requirement for determinism?
« Given that you play requests in order
— How bad is limit of f failures?
Think instead: you can build a system that can tolerate up to arbitrary failures.
Think about RAID: RAID 5 allows one fail-stop failure

Think not as ultimate guarantee of success - with more failures you could keep
running with relaxed correctness, but guarantee correctness up to f failures

Background on Failure

* Two generals problem:

— Two armies, each led by a general, are preparing to attack a fortified city. The
armies are encamped near the city, each on its own hill. A valley separates the
two hills, and the only way for the two generals to communicate is by
sending messengers through the valley.

— Unfortunately, the valley is occupied by the city's defenders and there's a
chance that any given messenger sent through the valley will be captured.
Note that while the two generals have agreed that they will attack, they
haven't agreed upon a time for attack before taking up their positions on their
respective hills._

— The two generals must have their armies attack the city at the same time in
order to succeed. They must thus communicate with each other to decide on
a time to attack and to agree to attack at that time, and each general must
know that the other general knows that they have agreed to the attack plan

Two Generals Problem

* Challenge: how do you agree on a time?
— Send a message “attack at noon”

— Send a response “0.k.”
— QUESTION: can they attack?
— Try with two more messages
+ Did you get my message
* Yes
* QUESTION: Can they attack? No
— Can never agree:
* Assume shortest protocol takes N messages
* From perspective of sender, doesn’t know outcome of last message

* Will take same action independent of that
~ Recipient must take same action, 50 must do same thing whether or not last message is received

* So could use N-1 messages...

— Bigger point: dealing with failure is complicated

Motivation

« Build reliable systems in the presence of faulty components
— Extension of lamport clock replicated state machines

* Common approach:
— Have multiple (potentially faulty) components compute same function
— Perform majority vote on outputs to get “right” result

majority(vl,v2,v3)

@

f faulty, f+1 good components ==> 2f+1 total

Example: Triple Modular Redundancy

(@)

{C2 X 1Vv8
C3 1Vve

* What if A produces different results to each
voter?

What is a Byzantine Failure?

* Three primary differences from Fail-Stop
Failure
1) Component can produce arbitrary output
¢ Fail-stop: produces correct output or none
2) Cannot always detect output is faulty

¢ Fail-stop: can always detect that component has
stopped

3) Components may work together maliciously
¢ No collusion across components

Process Resilience

Handling faulty processes: organize several

processes into a group

— All processes perform same computation

— All messages are sent to all members of the group

— Majority need to agree on results of a computation

— ldeally want multiple, independent implementations
of the application (to prevent identical bugs)

Replicated state machines

CS677: Distributed 0S

Assumption

* Good (nonfaulty) components must use
same input
— Otherwise, can’ t trust their output result either

* For majority voting to work:
1
2

All nonfaulty processors must use same input

— —

If input is nonfaulty, then all nonfaulty
processes use the value it provides

Byzantine Generals

* Algorithm to achieve agreement among “loyal
generals” (i.e., working components) given m “traitors” (i.e.,
faulty components)
* Agreement such that:
A) All loyal generals decide on same plan
B) Sjnall number of traitors cannot cause loyal generals to adopt “bad
plan”
* Terminology
— Let v(i) be information communicated by ith general
— Combine values v(1)...v(n) to form plan
* Rephrase agreement conditions:
A) All generals use same method for combining information
B) Decision is majority function of values v(1)...v(n)

Key Step: Agree on inputs

* Generals communicate v(i) values to one another:
1) Every loyal general must obtain same v(1)..v(n)
1’) Any two loyal generals use same value of v(i)
+ Traitor i will try to get loyal generals into using different v(i)’s
2) If ith general is loyal, then the value he sends must be used by every other
general as v(i)
¢ Problem: How can each general send his value to n-1 others?
* Acommanding general must send an order to his n-1 lieutenants
such that:
IC1) All loyal lieutenants obey same order
1C2) If commanding general is loyal, every loyal lieutenant obeys the order he
sends
* These are Interactive Consistency conditions
— Everybody agrees on a vector, and agrees on the [ith] element if node i
is correct

Impossibility Result

* With only 3 generals, no solution can work with even 1 traitor
(given oral messages)

attack

retreat

What should L1 do? Is commander or L2 the traitor???

Option 1: Loyal Commander

attack
attack

retreat

What must L1 do?

By IC2: L1 must obey commander and attack

Option 2: Loyal L2

retreat

attack

retreat
What must L1 do?

By ICI: L1 and L2 must obey same order --> L1 must retreat
Problem: L1 can’ t distinguish between 2 scenarios

Problem: L1 and L2 do not agree on inputs, cannot vote

General Impossibility Result

No solution with fewer than 3m+1 generals
can cope with m traitors

Why does not work with just 3:

— A commander, B and C lieutenants, B traitor
* Bcan lie so that it produces exactly the same results as
if A had been the liar.
* Why not less than 3m+1

— Can group all m failures into one group, all
successful ones in other groups, and solve the 3-
node problem

How many failures occur?

* Big question: how do you know what f is,
make sure you never exceed it?
— Answer: look at RAID — has same problem
* What if you have a correlated failure?
— power failure
— simultaneous attack
— bug in coordination software

Oral Messages

* Assumptions
— A1) Every message is delivered correctly
— A2) Receiver knows who sent message
— A3) Absence of message can be detected
* Question: are these realistic?

— use tcp/ip for correctness, IP address for source,
time for absence of messages

— Assume not outside malicious actors, or spoofing

Oral Message Algorithm

* OM(0)

— Commander sends his value to every lieutenant
* OM(m), m>0

— Commander sends his value to every lieutenant

— For each i, let v; be value Lieutenant i receives
from commander; act as commander for OM
(m-1) and send vi to n-2 other lieutenants

—Foreach i and each j not i, letv. bevalue

Lieut i received from Lieut j. Lieuticomputes
majority (v, «««ryn1)

Example: Bad Lieutenant

e Scenario: m=1, n=4, traitor = L3

OM(1): A

A

OM(0):?2?

A
Decision?? Ll =m (A, A, R); L2 = m (A, A, R); Both attack!

Example: Bad Commander

* Scenario: m=1, n=4, traitor=C

OM(L): A

OM(0):?2?
A

R
A

Decision?? L1=m(A, R, A); L2=m(A, R, A); L3=m(A,R,A); Attack!

Bigger Example: Bad Lieutenants

e Scenario: m=2, n=7, traitors=L5, L6

W@
Messages?

R RR

Decision??? M(AAAARR) ==> All loyal lieutenants attack!

Bigger Example: Bad Commander+

* Scenario: m=2, n=7, traitors=C, L6

W’
Messages?

EERE R

ARARA

Decision???

Decision with Bad Commander+

* L1: m(A,R,AR,A A) ==> Attack
* L2: m(R,R,A,R,A,R) ==> Retreat
* L3: m(A,R,A,R,A A) ==> Attack
* L4: m(R,R,A,R,A,R) ==> Retreat
* L5: m(A,R,A,R A A) ==> Attack

* Problem: All loyal lieutenants do NOT choose
same action

— SO: need more communication —commander +
cheater can tip majority

Next Step of Algorithm

« Key: Verify that lieutenants tell each other the same thing
— Requires # rounds = m+1 (0 + m)
— OM(0): Msg from Lieut i of form: “L0 said v0, L1 said v1, etc...”
. ?érich? level, get agreement on what the sender sends out, so cannot have some A

* What messages does L1 receive in this example?
— OM(2): A (commander sends)

- oM(1): 2R, 3A, 4R, 5A, 6A (recv what cmdr sent from others)

- oM(0): 2{ 3a, 4R, 5A, 6R} (2 sends all msgs heard in round 1)
- 3{2R, 4R, 5A, 6A}

- 4{2R, 3, 5A, 6R}

- 5{2R, 3a, 4R, 6a}

6{ total confusion }
* All see same messages in OM(0) from L1,2,3,4, and 5
— Uses majority for each other node — look down columns of matric in OM
(0)

* m(1A,2R,3A,4R,5A,-) ==> All attack
* NOTE: # of messages: (n-1)(n-2)(n-3)...(n-m-1) messages for m
traitors

Signed Messages

* New assumption: Cryptography

« A4) a. Loyal general’ s signature cannot be forged and
contents cannot be altered

. b. Anyone can verify authenticity of signature

* Simplifies problem:

— When lieutenant i passes on signed message from j, know that i did
not lie about what j said

— Lieutenants cannot do any harm alone (cannot forge loyal general’ s
orders)

— Only have to check for traitor commander

With cryptographic primitives, can implement Byzantine

Agreement with m+2 nodes, using SM(m)

Signed Messages Algorithm: SM(m)

1. Commander signs v and sends to all as (v:0)
2. Each lieuti: keeps a set V,

. A) If receive (v:0) and no other order

. 1) Vi=v

. 2) send (V:0:i) to all (so all see what he is going to do)
. B) If receive (v:0:j:...:k) and v not in V;

. 1)AddvtoV;

. 2) if (k<m) send (v:0:j:...:k:i) to all not in j...k

* NOTE: send because not everybody has seen it —all nodes in
vector could be faulty
* 3. When no more msgs, obey order of choose (V;)
- Why? Need to make sure all loyalists have seen all variants of Vi, use
deterministic choice

SM(1) Example: Bad Commander

* Scenario: m=1, n=3, bad commander

What next?

R:0:L2

V1={A R} V2={R A}
Both L1 and L2 can trust orders are from C
Both apply same decision to {A,R}

SM(2): Bad Commander+

* Scenario: m=2, n=4, bad commander and L3

Goal? L1 and L2
must make same

‘ decision

R:0:L3:L1

R:0:L3

V1 = V2 = {A,R} ==> Same decision

Implementing Assumptions

* A1) Every message sent by nonfaulty processor is delivered correctly
— Network failure ==> processor failure
— Handle as less connectivity in graph
e A2) Processor can determine sender of message
— Communication is over fixed, dedicated lines
— Switched network???
— Use secret-key encryption (point-to-point)
* A3) Absence of message can be detected
— Fixed max time to send message + synchronized clocks ==> If msg not received in
fixed time, use default
— Treats late messages as byzantine failures, only tolerate a few.
* A4) Processors sign msgs such that nonfaulty signatures cannot be forged
— Use randomizing function or cryptography to make likelihood of forgery very
small
— Public key signatures

Do byzantine faults occur

e Byzantine fault: a fault presenting different
symptoms to different observers
* Yahoo study: all faults either
— fail stop, ommission
— correlated (many simultaneous failures)
* Honeywell study:
— occurs in external interaction due to mis-timings
— race conditions modifying data when sending out to
replicas
* What about security attacks?

Practical Byzantine Fault Tolerance PBFT main ideas

.

* Use Byzantine FT to provide a service Idea (from Lampson):

— How can you make a real regular service survive byzantine faults? — Handle normal and worst case separately as a rule because the
)) requirements for the two are quite different. The normal case must be
* Use replicated state machine model fast. The worst case must make some progress
— Cluster of nodes (> 3f+1 for f faults)

Use signed messages
— Need independence for uncorrelated failures — Allows quick determination of who sent a message
— multiple implementations, power supplies, networks, operating systems

— Allows forwarding messages (e.g. for view-change)
— Service must be deterministic (same start state, same transitions leads « To deal with malicious primary
to same output;
utput) — Use a 3-phase protocol to agree on sequence number
¢ To deal with loss of agreement
— Use a bigger quorum (2f+1 out of 3f+1 nodes)

* To deal with as asynchrony:
* Relax synchronous requirement for correctness, needed for — Need only 2f+1 fast enough machines

« Clients request service from cluster, it replicates request
internally
— Uses a signed-messages protocol obviously

liveness — Treat longer delay as sign of failure, ensure progress

Why 3f+1 for signed msgs? PBFT Strategy

* Not just computing internal result, but outside world * Primary runs the protocol in the normal case

(client) needs to see result, needs to tell faulty from « Replicas watch the primary and do a view
non-faulty outcome

* BG model: local node needs to know what to do Change if it fails

— Must be possible to proceed after contacting (n-f) replicas, — Elect new trustworthy leader
since f replicas might be faulty and not respond

* Also possible that the f replicas that did not respond * Note: not replicating for scalability, just fault
are not faulty (but slow ...), so f of those that did tolerance
reply are faulty
— Asynchrony assumption

* So need enough of a majority in responses to make
right decision: n-2f >f 2> n > 3f

Algorithm Overview Ordering Requests

Primary-Backup:
* View designates the primary replica

T~

(2,899
primary backups

* Primary picks ordering
* Backups ensure primary behaves correctly
— certify correct ordering
— trigger view changes to replace faulty primary

State machine replication:

— deterministic replicas start in same state
—replicas execute same requests in same order
— correct replicas produce identical replies

replicas

view

f+1 matching<:2
replies

client replicas

Hard: ensure requests execute in same order

Quorums and Certificates

quorums have gt least 2f£+1 replicas

3f+1 replicas
quorums intersect in at least one correct replica

o Certificate = set with messages from a quoru
o Algorithm steps are justified by certificates

Replica state

* Avreplicaidi(between 0 and N-1)
— Replica 0, replica 1, ...
* Aview number v#, initially O
* Primary is the replica with id
i=v#modN
* Alog of <op, seq#, status> entries
— Status = pre-prepared or prepared or committed

View Change

* Replicas watch the primary
* Replicas request a view change when one
node is slow or misbehaving
— When enough replicas ask for view change, it
starts (act like pre-prepare messages)
* Commit point for new view: when 2f+1
replicas have prepared
« Just f nodes cannot trigger a view change

Normal Case Operation

* Three phase algorithm:
— pre-prepare picks order of requests
— prepare ensures order within views
— commit ensures order across views

* Replicas remember messages in log

* Messages are authenticated
— () denotes a message sent by k

Pre-prepare Phase

assign sequence number n to request m in view v

request : m

primary = replica 0 M

replica 1

replica 2 \\y
replica 3 W

® in view v
® never accepted pre-prepare for v,n with different
request

Prepare Phase
digest of m

mulflcgsf (prePAREVND(M)Y))

pre-prepare prepare

replica 0

replica 1 ' V
replica 2 T \ /

replica 3

accepted (PRE-PREPARENN,M) o

all collect pre-prepare and 2f maféhing prepares

LAY
P-certificate(m,v,n)

Order Within View

+ Prepare certificate = 2f+1 prepare messages for same view/
seq/digest

* No P-certificates with the same view and sequence number and

different requests

Replica is in prepared state if has a p-certificate for a request

If it were false:
replicas

quorum for quorum for
P-certificate(m,vn, _\ P-certificate(m’,v,n)

one correct replica in common = m = m’

Ensure everybody Commlt Phase

know request was
prepared multicast (commrunom.2) o,

pre-prepare prepare commit

replica 0 ! M / /
replica 1 i M H /
NN

replies

replica 2

replica 3%

replica has—~
P-certificate(m,v,n)

all collect 2f+1 matching commits
C-certificate(m,v,n)

Request m executed after:
« having C-certificate(m,v,n)
« executing requests with sequence number less than n

BFT

Request Pre—Preparg Prepare , Commit Reply
I I

lien t 1 3 3
\

Replica 3

Replica 4 i

Communication Optimizations
HMAC for digest — no public key

— Public key only for view change, where messages are forwarded

Digest replies: send only one reply to client with result

Optirrfjst‘ig execution: execute prepared requests
client

/4
N A Read-write operations
A\ /

\, execufe in fwo round-
trips
Read—only erations: executed In current state

clien

Read-only operations
execute in one round-trip

View Change

* Replicas watch the primary
* Request a view change
— send a do-viewchange request to all
* Include proof you saw all previous pre-prepare messages
— new primary requires 2f+1 requests
— sends new-view with this certificate
* Need 2f+1 view-change requests to prevent faulty
nodes from triggering frequent changes

Rest is similar

Key point: handle failure separately from normal
case!

Performance
e PBFT NFS file server runs about the same speed as
normal NFS
— Why?
* Answers:

— NFS bottlenecked by disk, PBFT NFS leaves data in memory

— PBFS introduces new message latency + encryption, but
not that much compared to disk

— NFS not CPU bound, so ample CPU to do extra encryption
— Only one client, so synchronous workload — not look at
scalability

Additional Issues

State transfer

Checkpoints (garbage collection of the log)
Selection of the primary

Timing of view changes

Under failure situations, throughput drops to
zero while views change

