Lecture 8 – Consistent Distributed Snapshots

Distributed Snapshots

a. Example:

- Distributed bank, money sent in reliable messages.
- Audit problem:
 - Count the total money in the bank.
 - While money continues to flow around.
 - Assume total amount of money is conserved (no deposits or withdrawals).

b.

- c. In picture below, start snap at first bar:
 - i. Node 1 has \$5
 - ii. Node 2 has \$0
 - iii. Node 3 has \$10
 - iv. Channel 2->1 has \$10
 - v. Channel 1-0>2 has \$5
 - Distributed bank, money sent in reliable messages.

• Audit problem:

- Count the total money in the bank.
- While money continues to flow around.
- Assume total amount of money is conserved (no deposits or withdrawals).

d.

- e. In Chandy-Lamport snapshot:
 - i. Node 1 records \$5
 - ii. Node 2 records \$5
 - iii. Node 3 records \$2
 - iv. Node 1 records 2->1: \$10
 - v. Node 2 records 3->2 \$8
- f. Why is this reordering correct?

- i. Problem: process could change state asynchronously (internal events) before the markers it sends are received by other sites
- ii. Has same events, can get from to this state with same events (in different order) from input
- iii. Can get from this state to same output event with same events (in different order)
- iv. Key idea:
 - 1. Reorder events in total order so that all pre-snapshot events happen, then snapshot, then post-snapshot events
- v. Notion:
 - 1. Actual states = global states that occurred
 - 2. Feasible states = states that could occur according to local state machine at each process
- vi. Based on logical time: can reorder logically concurrent events in the total order and get an equivalent output
- vii. EXAMPLE:
 - 1. Real order:
 - a. 1 sends 2 \$5 PRE
 - b. 2 sends 1 \$5 PRE
 - c. 1 sends 3 \$4 POST
 - d. 2 receives \$5 from 1 PRE
 - e. 1 receives \$10 from 2 POST
 - f. 3 sends \$8 to 2 PRE
 - g. 2 receives \$8 from 3 POST
 - h. 3 receives \$4 from 1 POST
 - 2. So can reorder
 - a. Move up d, f could happen at any time
 - b. REDRAW!
- viii. Suppose we could not reorder:
 - 1. Means there is a "happens before" relationship between the things being reordered
 - 2. Implies either
 - a. They are in the same process -> but not reordering anything in a single process
 - b. There is a line of causal communication between them
 - 3. If causal communication, then must have been a message
 - a. Would have an earlier (but post-snapshot) event followed by a later (but pre-snapshot) event with communication
 - b. But by rule, always send marker after snapshot, so recipient (pre-snapshot) would have had to snapshot,
 - c. CONTRADICTION!
- g. Effectively picks a "virtual time" for snapshot, moves all events to be before or after that event by stretching/compressing timelines

2. FLAWS:

a. State external to the system not captured (e.g. clients of a distributed service)