Lecture 7: Logical Time
1. Question from reviews
a. Inprotocol, is in-order delivery assumption reasonable?
i. TCP providesit ...
b. In protocol, need all participants to be present
i. Is this a reasonable assumption?
ii. Need separate protocol to handle membership ...
iii. Will not scale
c. How accurate can you get now?
i. GPS, if machine can see satellites, provides nanosecond accuracy
ii. NTP with GPS keeps other machines to 50 microseconds
iii. NTPoverlan~ 1ms
iv. NTP over WAN ~10ms
2. Key problem: how do you keep track of the order of events.
a. Examples: did a file get deleted before or after | ran that program?
b. Did this computers crash after | sent it a message?
c. QUESTION: Why is this a problem?
i. Clocks may be different on different machines
1. E.g. processorsin a multiprocessor system
2. Machines in a cluster
ii. QUESTION: How different do they have to be?
1. More than the minimum time to send a message (1 ms), which is
not much
iii. Relativity: given different computers executing simultaneously and
sending messages asynchronously, how can you tell?
d. QUESTION: what do we really care about?
i. If one thing happened at time X, and another at time X+delta, and they
never communicate, does it matter?
ii. Focus on “happens before” relationship
iii. Don’t need real clocks for many uses; since we are more interested in the
order of events then in when the actually happened
e. Examples:
i. What kind of clock is good for security logs?
1. Wall clock —want to correlate with human-scale events
2. Absolute time — coordinate with outside world



ii. What kind of clock is good for figuring out which machines
communicated and when?
1. Logical clock: want to be able to order the communication from
different machines (relative order)
f. QUESTION: Is there an application to computer games?
i. E.g.inadistributed environment, you can tell where another player is
logically?
3. CONTEXT FOR SOLUTION
a. General approach of theoretical papers: strip out all practical concerns not
relevant to the problem, as they can be layered on afterwards if you get the
basics right
b. Example: ignore message loss, reordering on a link
i. Easy to solve with TCP/IP
c. Example: Ignore process/link failure
i. Hard to solve, but need a separate protocol and this system works fine
between times
d. QUESTION: Why?
i. Addressing all these concerns is orthogonal to the problem in many
cases, clutters paper
ii. Note: real clocks and message delay are relevant, so they are incldued
4. Happens before
a. Intutive idea:
i. Eventsin asingle process are ordered (they are sequential)
ii. A message send always precedes the receipt of that message (no
speculation!)
b. Fortwo events a, b, a happens before b (a --=2 b) if:
i. Aandb are eventsin the same process and a occurred before b, or
ii. Aisasend event of a message m and b is the corresponding receive
event at the destination process, or
iii. A-- candc-->b for some event c (transitive)
c. Indicates causal relationship; a can affect b
5. Concurrent events:
a. Nota--bandnotb-- a



el1 el12 el13 el4

P1 —O O, O Oo— e11 and e21 are concurrent
e14 and e23 are concurrent
P2 @ @ @ @ e22 causally affects e14
b. e21 e22 e23 e24

c. Space time diagrams: time moves left, space is vertical (rotated from paper)
d. Note: this is a partial order
i. Not all events are ordered, some are before others (or after), but some
are not.
ii. QUESTION: in a distributed system, do you need a complete order or a
partial order?
6. Logical clock: any counter that assigns times to events such that
a. Clock condition: A -->B implies C(a) < C(b)
7. Lamport Logical Clocks

a. Each process Pi maintains a register (counter) C
b. Each event ain Piis timestamped Ci(a), the value of C when a occurred
c. IR1: Ciisincremented by 1 for each event in Pi
d. IR2:If ais the send of a message m from process Pi to Pj, then on receive of m:
i. Cj=max(Cj, Ci(a)+1)
el1 e12 e13 el14 e15 el16 el7
(1) (2) \ (3) (4) / (5) () (7)
(1) (2) (3) (4) (7)
P2 O O 0, O @,
e21 e22 e23 e24 e25
e.
A6-A10: receiver's clock is unaffected
because it is “running fast” relative to sender.
C35: LC update advances receiver's clock
if it is “running slow™ relative to sender
C L L ® >
0 1 5 6 7 8
f. DRAW TICK LINES

(connect zeroes, 1s, etcO



Al A2

A —® @ @ o
Al A5

Bl B2 B3 B4
B—@ 4 @ * L o—

Al<B2<C3

B3 < A4 -

Cl C3 C4
C3 < AS Y 3 ® PN C

8. Notes on logical clocks:
a. It provides the guarantee that a - b implies C(a) < C(b)
b. But, C(a) < C(b) does not imply a - b: see events e24 and e15 above
c. C(a)==C(b) implies a and b are concurrent, but not vice versa (see e24, e14)
9. IN LOOKING AT TICK LINES:
a. Must be line between two concurrent events
b. Must be line between send and receipt of a message
10. QUESTION: What happens with failures? How does that affect ordering
a. Tood Frederick comment ...
11. Total order
a. What if you need to agree on a total order for events?
b. Use logical clocks and break ties deterministically: using process ID or node ID as
a tie breaker
c. QUESTION: is this really a total order?
i. Real thing: an agreed upon order consistent with reality for happens-
before
d. QUESTION: What happens with failures?
12. QUESTION: Is this prone to errors? Sandeep ...

13. Use of logical clocks
a. Suppose everybody broadcasts updates
b. How do you impose a fixed order on updates?
c. Dothem in logical time order (assuming you wait forever...)
14. BIG QUESTION:
a. How useful is this?
i. When you care about order?
ii. When you don't have synchronized time



1. Sensors
2. Loosely coupled machines
iii. When you cannot afford a common time base
1. Multiprocessors
15. Physical clock extensions
a. Similar rule, but advance time according to clock received + minimum possible
delay
b. Need clock to be monotonic increasing
c. Isthe basis for NTP — send multiple messages to learn the minimum delay in
each direction, use that to sync clocks to bounds tighter than delay
16. Vector clocks (also used as Version Vectors)
a. Extension of logical clocks to capture more information
b. Suppose A sends to B, D at time 2 (A changes object, sends it out)
i. TimeofBis3
ii. TimeofDis3
iii. DthensendstoB
1. At B: has D seen A’s message yet? Does the copy of the object
from D include A’s change?
2. Cannot answer with logical clocks
a. C(Dsend) > C(A send) does not imply D send logically
occurs after A sends
c. Solution: “vector clocks”
i. Keep one logical clock per process, only incremented with local events
ii. Maintain a local vector clock tracking received timestamps
iii. Transmit all logical clock values you have seen
iv. Set local vector clock to pairwise max(received vector, local vector)
v. So:
1. Ci[i] = Pi’s own logical clock
2. Ci[j] = Pi’s best guess of logical time at Pj
a. Or: latest thing that Pj did that Pi knows about directly or
indirectly
vi. Implementation rules:
1. Events A and B in the same process: Ci[i] for a = Ci[i] for b + delta
2. Send vector clock Tm on all messages M
3. If Ais sending and B is receiving of a message M from Pi to Pj:
a. For all K, Cj[k] = max(Cj[k], Tm[k]
vii. Example:



P] g ‘a *
€n €5 €3
.. C..)
P, . Y
€ €y
(.
P3
viii.
Al A2 4,3,0) (5.3,3)
A —@® ® o o>
(1,0,0) (2,0.0) A4 AS
Bl B’ B 3 B-t
B—@
(0, 1,0) (I 2,0) (1.3, (H (1, 4 0)
Question: what if | have two
updates to the same data item,
and neither timestamp dominates C1 C2 '3
the other? ‘ ‘
,2,2) , 2, (1, ’ .4)

iX. 001
d. Rules for comparison:
Vector timestamps can be compared in the
obvious way:
—a=p iff Vi @[i] = 2]
— @ iff 3 ] # 2L
_ @< iff Vi #[i] < 2]
—r<t if (PP ArzEd)
Impoortant observation:
— Vi, Y Clil = C/li]

Equal if all elements equal
Not equal if at least one element not equal
Ta <=Tb if all elements less or equal
Ta<TbifTa<=TbandTa!l=Tb
a. Means must be at least one element where Ta[k] < Tb[k]

P wnNPR

ii. Causally related events with vector clocks:
1. A-2>BifandonlyifTa<Tb
iv. Concurrent with vector clocks:



1. TalcTbandTh < Ta
2. Consider past example: (A changes an object, sends it out)
a. Suppose A sends to B, D at time 2
i. TimeofBis3
ii. TimeofDis3
iii. DthensendstoB
1. AtB: has D seen A’s message yet?
2. Cannot answer with logical clocks
a. C(Dsend) > C(A send) does not imply
D send logically occurs after A sends
A (1,0,0) sends to B and D
B receives at (0,3,0), sets clock to (1,3,0)
D receives at (0,0,2), sets clock to (1,0,3)
D sends to B at (1,0,4)
B receives when clock is (1,4,0)
i. B knows that D has received A’s message, because
it has a 1 for A’s clock

-0 oo T

e. lIssues with vector clocks
i. How big are vectors?
1. Same size as the number of machines
ii. What if the set of machines changes? Can you get rid of elements
1. Only if you are sure it will never come back
iii. When used?
1. Good for replication (multiple copies of an object)
a. Can modify at multiple points
b. Can exchange updates pairwise
c. Want to know if the other side saw an update you saw
17. Replicated state machine: Using logical clocks:
a. Real problem: want a set of nodes to see same set of state transitions
i. E.g.lock requests, acquires, releases.
b. Problem:
i. Want to have a group of nodes perform the same set of actions on a set
of messages
ii. General approach: each node implements a state machine
1. Has local state
2. Receives messages causing it to update state, send reply message
3. Insome cases, must receive messages in same order at every
node



4,

Or, states must be commutative (can receive out of order without
changing outcome)

iii. For example: a distribute service storing your bank balance

1.

Send messages to deposit/withdraw to multiple copies, want
outcomes to be the same

iv. For example: decide who gets to modify a shared object (e.g. access

shared storage)

1.
2.
3.
4.

Send request to access to all nodes

All nodes agree on an order of who gets to access next
When it is your turn, do the access

When done, send message to release access

c. How it works for mutual exclusion:

i. Rules we want to implement:

1.

A process granted the resource must release it before anyone else
can access it (safety)

Grants of the resource are made in the order the requests are
made

If every grant is eventually release, then every request eventually
granted (liveness)

ii. What if we use a central scheduler? (assuming asynchronous messages)

1. PO has resource

2. P1sends a message to P1 requesting resource, then P2

3. P2receives P1’s message, then sends a request to PO asking for
resource

4. PO receives P2’s request before P1s (violation condition 2)

iii. Assume:

1. PO starts with resource

2. FIFO channels

3. Eventual delivery (no failures)

iv. Solution:

1. Each process maintains a local request queue initialized to TOPO
(because PO requests resource at time T0)

2. Torequest the resource, process Pi sends a RequestResource
message Tm:Pi to all other processes and places it in its own
request queue

3. When process Pj receives a request resource message, it places it

in its request queue and sends a (timestamped) ack message back
to Pi



To release a resource, Pi remove the RequestResource message
for Pi from its own queue and sends a Tm:Pi Release Resource
message to all other processes (old Tm:Pi)

When process Pj receives a release message, it removes Tm:Pi, it
removes any Tm:Pi request resource message from its queue

a. Note: this must be after the request and after the ack

Process Pi is granted the resource when:

a. There is a Tm:Pi RequestResource message in its queue
when Tm < any other Tm (assuming a total order for
messages)

b. Pihas received a message from every other process with a
time>Tm

v. Why works?

Vi.

Vii.

viii.

1. Condition b in part 6 above (Pi has received messages) ensures

that Pi would have heard about any other request from any other
process with a timestamp < Tm

Messages not deleted until granter sends a release message, so it
will be in everyone’s queue

Overall, don’t take resource until everyone else ACKs and you
know you are the least. On release resource, as soon as you get a
release, you can go next, because you know everybody else
agrees you will go next

QUESTION: What happens if there is a failure (message lost, time out

etc)?

1. Need to retry on a link-to-link basis

NOTE: relies on common knowledge

1. When you get the acks from everyone else, a process has
common knowledge that everyone knows of its request, and they
know that Pi knows of their requests when they see the ack

Example:

1. For processes: PO, P1, P2, P3

2. P1,P2send “request messages”, P1 at local time 1, P2 at local
time 2

3. PO-P3 put P1:1 and P2:2 in their queue and ack

4. PO sends release message

5. P1 takes over. When done, sends release

6. P2 takes over



release

VAN

NN

]
7.
18. Benefits of state machine approach

a. Everybody decides on right thing to do locally, knows everybody else will make
the same decision (common knowledge)

b. If everybody has the same initial state (e.g. lock release at low time) and sees the
same sequence of messages in the same order, they will compute the same
result in a distributed fashion

i. Basis for lots of mechanisms — replication
19. Note: Given protocol pretty unrealistic — it really is an example of how it could work

a. But basics of protocol are used — e.g. chubby lock servers use similar replicated

state machines

20.



