Lecture 6: Locus

Locus
1.QUESTIONS FROM REVIEWS:
a. No motivation for transparency
2.0verview
a. QUESTION: What is the goal of Locus?
i. Build a distributed system that acts like a larger monolithic system
ii. Build a system that runs unmodified Linux programs in a distributed
environment
iii. Environment:

1. Cluster of minicomputers

2. Supports many more users than machines

3. Any single machine could not handle workload

iv. Make distribution transparent

1. Programs cannot tell when remote resources are used

2. Single global name space

3. Process control (signals, IPC) works globally

4. Failures of remote nodes handled automatically, invisibly to
programs

5. QUESTION: What about performance transparency?

v. QUESTION: How close do they get to transparent?
vi. QUESTION: is transparency a good goal?

1. There are performance differences, so a program cares about
distribution. E.g., latencies for timeouts in failure, added latencies
for communication

3.QUESTION: What are the design goals for Locus
a. Keep Unix syscall interface
i. Provide per-process variables that are inherited to control policies
1. Destination for replicated files, number of copies
2. Destination for fork/exec
b. Provide strong consistency
i. Read of data should always return most recently written data
c. Provide availability
i. If datais available somewhere reachable, should be able to access a file
d. Provide fault and partition tolerance
i. Detect network partitioning, allow local actions with partition
ii. Keep running in face of node failures
4.Big picture: a distributed OS
a. Really just one OS instance, but runs on multiple computers, like running Linux or
Windows on multiple cores
b. Close coupling within a computer, loose coupling between computers
i. Routing for communication
ii. Failure handling



5.Transparency

a. Data transparency

i
i.
i.
iv.

Allow transparent access to remote data

Benefit: allows use of remote data resources

NFS is (largely) data transparent

NOTE: users may know from namespace what is remote

b. Process access transparency

i
ii.
iii.
iv.
V.

Local resources accessed with same mechanisms as remote resources
Benefit: user doesn’t need to worry what’s local and what’s not

NFS, RPC are process access transparent

WWW is not process access transparent

NOTE: tends to ignore performance differences

c. Location transparency

i
i.
iii.
iv.

Where resources are located is invisible

Benefit: resources can be moved without disruption
RPC can be location transparent

WWW is not location transparent

d. Name transparency

i
iv.

A given name has the same meaning throughout the distributed system
Benefit: same name gets to same resource from anywhere

Fully qualified WWW names are name transparent

/tmp in most distributed FSes is not

e. Control transparency

Control of system resources is transparent to its users (e.g., remote
processes controlled like local)

Benefit: easier control of distributed applications

Locus provides control transparency on processes

Typical UNIX network of workstation does not provide it on processes

f. Executlon Transparency

Allows processes to execute on any machine in system (and more,
perhaps)

Benefit: easier handling of distributed applications, load balancing
Java is execution transparent (not load balancing, though)

NFS provides no execution transparency

g. Performance transparency

i
ii.
iii.
iv.
V.

Users don’t notice difference when something must be done remotely
Benefit: if achievable, frees user of worrying about costs of going remote
NFS has high degree of performance transparency
WWW often does not
NOTE: How can you do this?

1. Make local case slow

2. High speed networks, very powerful servers (e.g. ATM, Myrinet)

h. Benefits of transparency

Easier software development



1. System handles all details of distribution
ii. Support for incremental changes
1. Changes at network level invisible to apps,
iii. Potentially better reliability
1. System provides it for all apps
iv. Simpler user model
1. One way to do everything
v. Flexibility in resource location
1. Can do it anywhere
vi. Support for scaling
1. Add more servers, replicate more, partition differently
i. When provide transparency?
i. In applications (especially databases)
1. Database may be parallel/distributed
ii. In programming languages
1. E.g. RPC for remote access
iii. In operating system itself
1. Network file systems, Locus
j- When can you not provide it?
i. When it’s too complex to provide
1. E.g., heterogeneous systems
ii. When you want particular resources
1. E.g., /tmp
iii. when remote performance is terrible
1. E.g., over very slow links
iv. When there is a security difference
1. E.g. administrative domains
v. Must be able to bypass transparency
6.Locus assumptions
a. High speed network
b. Various speed processors
7.Locus design elements
a. Global file name space
i. Same file names used everywhere, as on a monolithic system
b. File groups (like a volume) — how used?
i. Unit of mounting to form the file system name space
ii. Unit of ordering: each file group has a single site for ordering updates
iii. QUESTION: Why?
1. Ensures agreement on where to do updates, what is the latest
copy
iv. Note: have to fully replicate mount points of file groups
1. Limits scalability, assume changes rarely
v. File descriptors/Inode numbers unique to a file group, so can allocate
independently



c. Replicated files
i. Each file is replicated at a number of locations (different for each file)
ii. QUESTION: Why have per-file replication policy?
iii. Partition file group inode space so can allocate unique inode numbers at
each place a file could be created.
d. Transactions for multi-file updates
i. As files are on multiple computers, can update all or none
ii. NOTE: need to store old+new data (old in memory)
1. Limits size of transaction to buffer space available
iii. QUESTION: Was this a good design point? Violates transparency (not part
of Unix), so would it be used?
1. How would you use it?
e. Version vectors for detecting consistencies
i. Can determine DAG of updates, detect if one logically is after another or
concurrent
ii. Will cover later in more detail
8.Scalability
a. QUESTION: What does Locus do for scalability
i. File replication
1. Can do reads at multiple locations
2. Particularly useful for directories high in namespace
ii. Multiple file groups
1. Partitioning
iii. Remote execute for load balancing
b. QUESTION: What does Locus not do for scalability
i. Protocols involving all nodes simultaneously: partition/merge
ii. Transparency for remote file descriptors
iii. Per-file replication state
c. QUESTION: Compare to Condor, 5-7 years later
i. How differ in goals?
1. One assume heterogeneity, distributed control
ii. How differ in approaches
1. One is loosely coupled, limited transparency
d. Not have dedicated servers (e.g. file servers, authentication servers)
i. Could compromise reliability — single points of failure
ii. May need to cross boundaries anyway for some operations, and having
them on different machines adds latency
1. E.g. authenticating access to a file server
iii. Locus takes an integrated model: each machine runs all the components
of Locus, and do anything (opposite of LARD, Google)
9.Concurrency control / consistency
a. CSS - current synchronization site
i. Enforces single writer/multiple reader policy for files
1. Directories relax this — unlocked reads, atomic inserts/deletes



ii. Provides locking for files being written
iii. Knows which files open/closed
b. Can have multiple CSS if partitioned
i. Leads to conflicts
10. Replication
a. Each file/directory has a list of nodes storing data
i. QUESTION: What if a node joins or leaves permanently?
b. Updating a file:
i. Send update to one replica (CSS prevents simultaneous updates at two
nodes)
ii. Replica notifies other copies of change (new version), may push data or
not
iii. Replica (SS) pulls changes using read protocol
1. On failure, can pull changes later
c. What happens in the face of conflicts?
i. If have file locally, can always update and resolve conflicts later
ii. Favor availability over strong consistency
11. Handling Conflicts
a. QUESTION: When can conflicts occur?
i. With partitioning or without?
b. QUESTION: What constitutes a conflict?
i. Simultaneous update of a file in two partitions
ii. Simultaneous operation on same file name in two partitions
c. QUESTION: How handle file conflicts?
i. Email user
ii. QUESTION: What do you want here?
1. Ask program to resolve conflict on open
2. Provide a program to resolve conflicts when detected
3. Save both copies under different names
d. QUESTION: how handle directory conflicts?
i. QUESTION: What are basic directory operations:
1. Add a name
2. Delete a name
3. Change name/metadata association
ii. Option A: treat any change to directory as conflicting with any other
change
1. Too many conflicts, restricts concurrency
iii. Option B: handle each separately
1. Two files created/renamed to same name
a. Resolution: Rename both, notify owners
2. Delete/update
a. Keep delete unless update after the delete
12. Handling Partitions / Reconfiguration
a. QUESTION: What is the challenge



i. Not have full connectivity between nodes
ii. Protocols assume full connectivity
iii. May have partitions
b. Approach: separate problem into two cases
i. Partition protocol: detect fully connected
1. Ask your neighbors who they can talk to, AND it all together
ii. Merge protocol: combine fully connected components that are reachable
into a partition
1. Done centrally at one site
iii. QUESTION: Why separate the protocols?
1. Simpler synchronization — have to worry about changes while
running protocols
2. Different needs of the protocols
c. Major challenges (alluded to but not discussed)
i. Failures during reconfiguration
ii. Delays during reconfiguration
13. Failure handling
a. QUESTION: What failures are handled
i. Largely a node not being reachable
b. QUESTION: Who is responsible for handling failed nodes?
i. Server must handle failed clients by remove state, discarding updates
ii. Clients must handle failed servers by closing files or trying to open
another replica
14. Hard parts about transparency
a. Fork/exec: bad interface for remote exec, as have to copy lots of address space
data
Signals — overall confusing even locally
Shared file descriptors
i. Requires token-based ownership protocol
15. QUESTION: Where does transparency break down?
a. Failures not transparent
b. Conflicts not transparent
c. Performance not transparent
d. QUESTION: Is transparency needed?
i. Compare Condor and Locus
16. Big lessons of Locus
a. Unix system call interface not designed for transparency
i. Too much implicit sharing -- file descriptors, signals, pipes
Completely transparent distributed system may not be worth it
Follow on work: V from Stanford, Amoeba from Netherlands, Sprite from
Berkeley all drop strong transparency goal
d. May be more applicable on Multicore, where reliability less of a goal
i. Barrelfish multikernel
e. Ultimate use today is to make distributed just the pieces that matter



i. Network file systems on dedicated servers, minimal replication
ii. Remote login
iii. Batch scheduling for CPU/data intensive jobs



