1.Comments on reviews
a. Need to avoid just summarizing — web page asks you for:
i. A one or two sentence summary of the paper
ii. A description of the problem they were trying to solve
iii. A summary of the contributions of the paper
iv. The one or two largest flaws in the paper
v. A discussion of how the ideas in the paper are applicable to real
systems.
b. Contributions —
i. Writing a clear paper is not really a contribution
ii. Discussing motivation rarely a contribution
iii. Experimenting is not a contribution
iv. Contribution is what moves the state of the art forward: what do you
know after reading this paper that no body knew before this paper was
written? E.g. how to distribute requests at high speed with locality, how
to balance load while respecting locality?
c. Evaluation—
i. Papers never have a good enough evaluation
ii. What is the purpose?
1. Validation: prove you built something and it can work
2. Parameter exploration: try with a variety of different
assumptions/workloads, and find corners where it works well or
doesn’t
3. Proof it works — basically need to run on a live workload, pretty
much impossible in academia
iii. Academic papers tend to do validation, exploration. Industry papers tend
to do proof it works, without explaining why or what the limits are.
2.Topic 1: Scalability
a. QUESTION: What are problems?
i. These papers look at distributing load
b. QUESTION: What is the context?
i. How to build a web site or web cache to serve maximum load
ii. Assume static documents (this is old ...)
iii. Assume shared back end storage (draw picture!)
c. QUESTION: What are concerns?
i. Avoid hotspots:
1. Load on a single document can exceed capacity of a single machine
2. Web workloads show huge variation in popularity — millions of hits
per day vs none, and can exceed any server size in load.
ii. Leverage memory
1. Size of documents exceeds memory size of cache
2. Want to use aggregate capacity of all machines
iii. Reduce latency

1. Avoid multi-step lookups
d. Question: What are simple approaches:
i. Round robin: distribute workload round robin to front ends
1. Yields cache size equivalent to a single machine —all nodes hold
same, popular data
ii. Hierarchical cache / peer-to-peer caching
1. Ask one cache, it talks to others
iii. Problems:
1. locality, making most of memory
2. latency of talking to multiple machines
3.LARD
a. Comments from reviews:
i. Simulation study seems bogus
1. But, they also tested a small cluster
2. Note: this paper is from 1998, when large clusters were
uncommon in academia
ii. Tested environment very small
iii. Back-end cache policy not part of the paper. QUESTION: Should it be
(Linhai Song)
iv. Data is static — but dynamic content often made from static pieces (e.g.
pictures, videos), and many of the bytes come from the static pieces.
v. Doesn’t fit current multi-tier internet app, with front end caching
(Akamai) and back end. But, still gets used in facebook with memcached
servers and backend db servers (Lanyue Lu)
1. Caching still very critical in data center
vi. Assumption that all data fits on one node (Lanyue Lu)
1. But assumes that all data does not fit in memory
vii. Single front end server is a limitation
1. QUESTION: why? Because it aggregates load information, has
complete control over map
viii. Is this a distributed system?
b.
c. NOTE: LARD is used in commercial products (layer 7 switching)
d. QUESTION: What is basic system setup?
i. Large web site with cacheable content (e.g. videos in Youtube, facebook
pictures)
1. Want to serve at cache rates, not disk rates
ii. Any backend can server any data (all access common database)
1. Used by Facebook for lots of things
iii. Front end director parses requests, sends to a back end to be serviced
1. Requests can queue in front end to avoid overloading back ends
iv. Complexities:
1. To parse HTTP request, need to terminate TCP connection, but
want back end to send back data directly

2. Want to direct requests to balance load, but keep locality for
caching
e. QUESTION: What are the goals?
i. First: maintain locality to keep highest number of different items in
memory
ii. Second: spread load to leverage all resources in system
iii. Core problem: load imbalance. Some items are popular, other are not as
popular
1. Popular content 1000s of times more popular than unpopular.
2. Normal hashing to distribute work or round robin leads to hot
nodes with too many hits
f. Techniques:
i. Assign URLs to nodes
1. How doit?
a. Look at least loaded node
b. QUESTION: What information is needed for this?
i. Need centralized notion of least loaded node
c. QUESTION: Do you have to choose the least loaded node?
i. ANSWER: just pick two and choose less load
1. Avoids hot spots rather than picking global
best
2. Can do better than picking best, because
everybody picks the same best one
d. QUESTION: What if load is out of date?
i. Picking least load has problems because you
concentrate load there
ii. Better off picking a set randomly and choosing
least loaded
2. QUESTION: How do you measure load?
a. 1/0 queue? Memory usage? CPU Load?
i. Porcupine uses disk requests queue length
b. LARD uses # of connections. Why?
i. Infois available at front end, no need to ask for
stale info from the back.
ii. HTTP 1.0 closes connection after every request
iii. s good enough to work...
c. Back-end cache policy not part of the paper.
i. QUESTION: Should it be (Linhai Song)

ii. Balancing load
1. If a node has too much load, need to spill load
2. QUESTION: How do this?
a. Ifload exceeds threshold where latency suffers, look for

underloaded node

i. Prevents idle nodes
b. If load exceeds twice threshold, spill to any node under
high threshold (even if not lightly loaded)
3. QUESTION: Why does this work?
a. Evensload beween low and high thresholds
4. QUESTION: How pick Thigh — highest load before shunting data to
a low-load node?
a. ANSWER: look at response time at high load. Generally,
throughput increases then flattens as load increases
(becomes saturated) and latency shoots up
b. Set Thigh to be knee in curve where latency low, but are at
peak throughput
iii. Balancing load with replication: more than a single node of load
1. QUESTION: How do you know the right number of servers?
a. If load < one whole machine, the answer is 1...
b. Overload: keep adding servers until you don’t get load
imbalance
¢. Underload: keep removing servers until you do get load
imbalance (but slowly)
d.
2. Start increasing number of servers if one is overloaded by picking
lightly loaded node
3. Always change the set — either keep increasing or stop and
decrease
a. Prevents sending a now-dead URL to somewhere
4. Comparision: TCP/IP
a. Additive increase to slowly ramp up
b. Multiplicative decrease to slow down (quickly avoid
congestion)
5. Here: slowly move # of nodes up and down
6. NOTE: General technique to slowly adapt to load —increase until
get it right, decrease until pain
7. NOTE: Front end is managing cache sizes in the backend, but
knows nothing about the caches
a. QUESTION: Why does this work?
b. Feedback: # of connections relates to efficiency of back
end
c. Slow back ends have connections migrated off, fast ones
get more
d. Handling things fast means connections are open shorter
time, have fewer active connections at once
i. Littles law: # of active connections = arrival rate *
service time
iv. TCP Handoff

1. Front end accepts TCP connection, gets HTTP request, parses URL
2. Then packages up TCP state and sends to back end
a. Remembers in kernel to forward packets from flow to back
end
b. Back end replies directly to client (IP spoofing)
3. Note: after redirect, just need to forward packets, no other packet
inspection (can be made fast)
g. What about recovery — what if front-end nodes fail?
i. Cansend load anywhere & rebuild map
h. What about state?
i. Front end must maintain a table the size of URLs to do lookup
i. What about dynamic content?
i. Dynamic content gets generated from some back end static content
ii. Can send requests to location of the underlying static content
iii. Could do dynamic generation in front end and pull underlying static
content using LARD
j- Results:
i. Does better than hashing content, because it can avoid hot spots and idle
nodes
ii. Does better than weighting (WRR), because it has locality so gets better
use of caches
k. QUESTION: What are the big take-away ideas?
i. Request placement for maximizing cache locality
ii. Load balancing by evening loads (minimize difference between low/high)
iii. Proxying to forward requests to best backend
4.Consistent hashing
a. Notes from reviews:
i.
b. Problem solved: building a distributed cache
i. QUESTION: What are the goals for the cache?
1. Goal 1: reduce load on backbone (fewer requests to server)
2. Goal 2: reduce latency to client
3. Goal 3: fault tolerance — keeps working well if a cache fails
ii. Constraints:
1. allow set of cache servers to change
2. Partition objects among cache servers
iii. NOTE: only ¥ the content is cacheable
1. But many web pages have many objects (pictures, video, flash),
and those binary objects are cacheable
2. %is still a lot to reduce.
iv. Invalidation: HTTP includes time-to-live fields, controls cacheability (for
browser cache as well)
v. Model: Any cache node can fetch and cache any web page
vi. How do you get locality so that you use the memory capacity of a cache?

Internet Backbone News Sie

= |
= =i

(0]

J

Internet Backbone News Sue

(i)

vii.

viii. NOTE: get scalability, because different sets of clients have a unique set
of caches. This is client-side caching, not server-side caching (Different
from LARD)

ix.
c. Constraints:
i. Want to keep latency low, so now referrals/redirections/remote
communication
ii. Want to partition data so maximally use cache
d. QUESTION: What are some possible approaches?
i. Cooperative caching / P2P: send request to one cache, it asks others if it
does not have it
ii. Hierarchical caching: send to cache, it asks its parent, etc.
iii. Broadcast: send to all caches, the one with the data responds
e. General solution: hashing
i. Have the client hash the URL to choose a cache
1. Does location service without an extra hop by pushing it to client
ii. H(url) =m*url+b modq
1. Problem: if number of nodes change (q), everything moves: (from
d+1 mod 4 to d+1 mod 5)
2. Problem: set of caches may change over time, don't want to lose
locality
3. If clients don’t learn of change immediately, don’t want to lose
performance

A

3T e ®

2 ° L)

1] e

o+ ° o o °
t + + + + + + t t t
5 7 10 1 27 29 36 38 40 43

(i)

Servers

aT 0 o

3T o e o °

2+ e () e 0O

W+ O (m] °]

o+ ° e o [.
4 N n " 4 . 4 3 : :
t t t t t + + + t t
5 7 0w n 27 36 38 40 43

(i)

4

5. Each change it set of servers is a view, would like data to keep

locality across views
Goal:

1. -balance — objects are assigned to buckets random

2. - monotonicity —when a bucket is added or removed, the only
objects affected are those mapped to the bucket

3. -load —objects are assigned to the buckets evenly over a set of

views

4. -spread—an object is mapped to a small number of buckets over

a spread of views

5. QUESTION: Are these realistic goals? How else could you solve it?
a. LARD: maintain a table of all URLs (but then need to

update it ...)

f. Solution: Consistent hashing

General idea: add a layer of indirection into hashing instead of hashing

directly to servers

Don't hash directly onto a bucket, hash on to a range of real numbers

with ranges

® Server
O Document

iii.
iv. Solution part 2: put each server at multiple locations, so things move
from many places

vi. Change of view:

Items

Buckets
(i)

Items

Buckets
(i)

Figure 10: Monotonicity for the family UC,q4ndom- In this figure the unit
circle is depicted by an interval of length one, which is obtained by cutting
the unit circle at an arbitrary point. (i) The mapping of points to the circle
for a view Vo = A, B,C, D (m=2in this example). The closest bucket point
clockwise of i’s point is one associated with the bucket D. (ii) For any view
Vi € Vi containing the bucket D (here Vi = C, D), the point closest to i’s
vii. point will still be D. .
g. Details:
i. hash function that takes URLs and outputs a number of 0 ... M
1. URLs and caches are mapped to points on a circle 0 ... M
2. Map caches in multiple places because there are relatively few
compared to # of documents, and want even spread.
ii. How to add cache?
1. Move objects that are "closest" on circle to new cache
2. note: map cache on multiple points of circle for uniform
3. distribution of URLs to caches
4. result: each URL is in a small number of caches
iii. How to do lookup?
1. First cache that succeeds hash(U) has document
2. Can store tree with whole range, or partition range and have a
tree per partition
iv. How implement?
1. Use DNS: have client hash URL into large number of virtual caches
(e.g. 1000), then ask DNS for the physical cache associated with
virtual cache
2. DNS contains closest node for each 1000 virtual cache
h. QUESTION: how compare with LARD?
i. Uses hash to spread load rather than lookup table
ii. Isnotload aware
1. In their setting, detailed load information not available

iii. Is scalable: can have multiple DNS servers doing hashing (or all clients)
i. QUESTION: How handle load?
i. Cannot do fully distributed (at all clients), as they don't have load
information
ii. Solution: spread hot content across more caches
1. Step 0O: identify hot virtual names in DNS resolver
2. Step 1: take all names in one of the buckets for a cache and let
them go to any server (round robin) (there may be many)
3. Step 2: reduce number of servers for the virtual name until load
goes up
a. |If picked wrong virtual server, will never go up
4. Step 3: try with another virtual server (bucket)
j- Question: how handle geography of clients?
i. Use it when determining virtual caches — can choose ones with a nearby
resolver, which returns nearby caches. Done in client script
k. Fault tolerance:
i. When a cache fails: can have fixed retry rule (e.g. next node on ring)
ii. When a DNS server fails: can replicate, clients already know how to
contact another DNS server
1. DNS servers may need to communicate for the hot-page solution
l. Implementation: Akamai (simplified without geographic location):
i. Content producer runs a tool to name a document with a hash function
1. E.g. a604.akamai.com (604 is the hash bucket)
2. Set time to live to be short (a few seconds) so can respond to load
bursts
3. NOTE: in paper, client did the hash, so was transparent to servers.
Here, content producer does hash, so clients not modified.
ii. DNS lookup of a604 returns result of hash function: set of servers that
may contain document
iii. Note: hashing may not be random, e.g. may try to cluster all objects in an
web page to one cache to minimize DNS lookups
5.Comments:
a. Consistent hashing allows you to use hashing with locality as set of views change
b. Avoids need to remember everything in front end to keep locality
c. Lack of state makes dealing with hot spots hard
i. Hashing spreads most load fairly evenly
ii. Feedback + increase spread of a virtual server (number of IPs hosting that
virtual server) helps
d. Compare to DHTs:
i. DHTSs typically forward requests multiple times, at minimum once, adding
latency
ii. DHTs don’t necessarily preserve locality, unless they rely on similar
techniques, or scale well
e. How work with local cache?

i. Claims its better to go right to this cache than consult local cache first
(local cache adds latency)
ii. Lacks complete load balancing (true)
f. Adds work to DNS server?
i. Butcanadd more dns servers ...
g. Real world impact:
i. ldea used in Dynamo for assigning key/values to servers
ii. Idea used by Akamai for finding caches.

