Cloud Scheduling

4/19/11

What are the considerations?

* What is scheduled?
— Map-Reduce / Dryad model:
* Complete parallel computation jobs
« Short term
— Web services:
* Numbers of machine to allocate to a service
* Longterm
¢ What are the goals?
— Performance
— Efficiency (low bandwidth on expensive links)
— Fairness of multiple jobs
— Low energy
— Low temperature

Quincy

Data-intensive compute clusters have a range
of job lengths, but most < 30 minutes

Users want fairness:

— Nobody monopolizes all machines
Systems needs locality

— Minimize bandwidth needs
These conflict:

— Waiting for machine with your data may delay you
& reduce fairness

Motivation

* Fairness:

— Existing dryad scheduler unfair [greedy approach].

— Subsequent small jobs waiting for a large job to finish.
e Data Locality:

— HPC jobs fetch data from a SAN, no need for co-location of
data and computation.

— Data intensive workloads have storage attached to
computers.

— Scheduling tasks near data improves performance.

Fair Sharing

Job X takes t seconds when it runs exclusively on a
cluster.

X should take no more than Jt seconds when cluster
has J concurrent jobs.

Formally, for N computers and J jobs, each job
should get at-least N/J computers.

Department of Computer Scienc

UIL

Fine Grain Resource Sharing

* For MPI jobs, coarse grain scheduling
— Devote a fixed set of computers for a particular job
— Static allocation, rarely change the allocation
— Killing/moving expensive: lots of state, lots of
communicatoin
* For data intensive jobs (map-reduce, dryad)
— We need fine grain resource sharing
* multiplex all computers in the cluster between all jobs
— Large datasets attached to each computer
— Independent tasks (less costly to kill a task and restart)

|

uC

How share?

* How do you achieve locality?
— Wait for the computers with your data to be available

— This leads to unfairness when long-running jobs are using
them

* How do you achieve fair share?
— Kill some jobs (preemption)

— Run jobs earlier on non-optimal computers (remote data
access)

— Both of these have costs ...

4/19/11

Computation model

¢ Ajob =a computation made of many tasks/workers
¢ Asingle scheduler maintains a job queue of concurrent
jobs
— The master for a job submits a list of workers to the
scheduler to be run
— Finishing a worker may trigger the master to submit more
jobs
— Each worker is annotated with location of its data + size
« Schedule can compute transfer cost from different locations
* Preferred locations = computers that have 10% of data or more
« Preferred racks = racks with > 10% of input data
* Scheduler places jobs from the queue and can kill them
to reclaim the machine

Example of Coarse Grain Sharing

Department of Computer Science, UTUC

Example of Fine Grain Sharing

QUESTION: Why fine grained? More flexibility in creating jobs

Department of Computer Seience
uIue

Goals of Quincy

* Fair sharing with locality.

* N computers, J jobs (independent of # of workers),
— Each job gets at-least N/J computers
— With data locality
« place tasks near data to avoid network bottlenecks

— Feels like a multi-constrained optimization problem with
trade-offs!

— Joint optimization of fairness and data locality
— These objectives might be at odds!

uruc

Cluster Architecture

Department of Computer Seience .
uIue

Baseline: Queue Based Scheduler

. c

Job assigned to preferred

Each computer (c) and rack (r) have a
computer, rack, and X

queue. Idle computers pull from queue Ci

Department of Computer
UIUC

then from rack queue Rj then common queue X
cience -

4/19/11

Greedy Sched Problems: fairness for
new jobs

* Biased towards jobs with lots of tasks

— Can fill up all the queues, new tasks don’t start
* Long latency on loaded cluster

— Already tasks in all the queues from other jobs

Solution 1: block jobs using more than fair share of
machines

— Prevents it from submitting new workers when it already
has its share

— But tasks already in the system can cause unfairness...
* Solution 2: preemption

— Kill some tasks if a job has more than its share of workers

Quincy Idea

* Compute cost of a scheduling decision (delaying,
running on wrong machine, or killing a task)

* Compute optimal assignment from these costs

* Express problem as a flow network
— Nodes in the network are racks, machines, tasks

— Add edges from machines to queues where they are
scheduled

— Adjust weights & capacity of network to account for
data locality

Flow Based Scheduler = Quincy

* Main Idea: [Matching = Scheduling]

— Construct a graph based on scheduling constraints, and
cluster architecture.

— Assign costs to each matching.

— Finding a min cost flow on the graph is equivalent to
finding a feasible schedule.

— Each task is either scheduled on a computer or it remains
unscheduled.

— Fairness constrains number of tasks scheduled for each
job.

Separtment of Computer Seenc
i

Graph Construction

* Flow networks:
— Each link has a capacity
— Each node has a supply
— Each node is balanced: flow in + supply= flow out
* Start with jobs
— Each one has a “token” of work
— Each computer can do a “token” of work (no sharing)
— Goal: assign flow of jobs to machines
* Add weights to reflect scheduling choices
* NOTE: graph evolves over time

Graph Construction

* Start with a directed graph representation of the cluster
architecture.

4/19/11

Add jobs

* Initially unscheduled, so connected there

* Each job has supply 1

* Cost on link to U is the cost of leaving a job
unscheduled
— E.g. could be delayed until a better option available
— Can increase over time to add pressure to schedule

* Supply of U ->sink = number of jobs that can be
left unscheduled

Graph Construction (2)
~-a—®
_./ DCI

~@ ®Z O
*@ ~ 2
O, e

—-é@ \ ©

+ Add an unscheduled node Uj. /

+ Each worker task has an edge to U;. C]Q

+ Thereisasingle edge from Uj to the @ e
o —®<CF

High cost on edges from tasks to U;. N

* The cost and flow on the edge from Dce

U, to the sink controls fairness.

+ Fairness controlled by adjusting the

number of tasks allowed for each job

Connect tasks to preferred locations

* Connect to preferred racks and computers

* Weight on edges = communication cost to that
place

» Connect tasks to root X with default cross-rack
cost
— Avoids connecting tasks to all computers

* Connect tasks to preferred racks
— Cost is cross-node but intra-rack communication
— Connect tasks to preferred nodes
— If task is running somewhere, connect there

« Add edges from tasks (T) to computers (C),

* cost(T-C) << cost(T-R) << cost(T-X). @ @ *'C] s,

« Control over data locality.

* 0 cost edge from root task to computer to \DC
5

Graph Construction (3)

racks (R), and the cluster (X).

avoid preempting root task.

Add killing links

* When task starts on a computer C, increase
cost to all nodes other than C reflecting cost of
killing/moving the job

Adding fairness

* Change the number of jobs that can be
unscheduled

— If 0: have preemption (must take a computer from
someone else)

—If 0 but remove links to other nodes once job is
scheduled: fair share w/o preemption

— If set to n-1 tasks of a job -> unfair sharing
* Control costs of leaving a task unscheduled
— Initially zero, can raise over time

Quincy Assumptions

* Single job per node

— No worries about different constraints (e.g., network, memory)
* Independent jobs

— No constraints that two tasks must be on same node

— Dryad handles this before creating tasks
* Global uniform cost measure

— E.g. Quincy assumes that the cost of preempting a running
job can be expressed in the same units as the cost of data
transfer.

— Allows for single cost metric on a flow

UIuc

4/19/11

Final Graph

Department of Computer Scence
it

How to use Graph

* Run a solver to find the min flow solution
— Fairly fast (éms for 243 nodes)
* When to run?

— Whenever set of jobs changes

Energy-aware Scheduling

* Problem:
— Idle machines use more than zero power
— Reduce data center efficiency

* Solution:

— Consolidate workloads onto fewer machines

Managing Energy and Server Resources

* Key idea: a hosting center OS maintains the
balance of requests and responses, energy

inputs, and thermal outputs. US in 2003:
1. Adaptively provision server 22]&%5315

energy
resources to match request load. v
2. Provision server resources for
energy efficiency.
3. Degrade service on power/ €945t ¥ P responses
cooling failures.
Power/cooling “browndown” v
Dynamic thermal management
waste heat

[Brooks]

Contributions

< Architecture/prototype for adaptive provisioning of server
resources in Internet server clusters (Muse)
— Software feedback
— Reconfigurable request redirection
— Addresses a key challenge for hosting automation
* Foundation for energy management in hosting centers
— 25% - 75% energy savings
— Degrade rationally (“gracefully”) under constraint (e.g., browndown)
« Simple “economic” resource allocation
— Continuous utility functions: customers “pay” for performance.
— Balance service quality and resource usage.

Utilization Targets

u; = allocated server resource for service i
;= utilization of at /" s current load 4,

Prarger = configurable target level for p,
Leave headroom for load spikes.

01> Prarger : SEIViCe | is underprovisioned

01 <Prarger : SETViCe | is overprovisioned

Energy vs. Service Quality

—
— L
A A
—
T 5
B
* L #*
Active set = {A,B,C,D} S Active set = {A,B} .
—
—_—
: [l
pi <p target pi =p target
* Low latency * Meets quality goals
* Saves energy

Muse Architecture

Executive

configuration performance
commands Control measures

offered

— storage
relzz:’zst — \ﬂﬁ tier
reconfigurable
switches .
) . . X server pool
Executive controls mapping of service traffic stateless
to server resources by means of: interchangeable

* reconfigurable switches
o scheduler controls (shares)

Energy-Conscious Provisioning

 Light load: concentrate traffic on a minimal set of servers.
— Step down surplus servers to a low-power state.
* APM and ACPI
— Activate surplus servers on demand.
* Wake-On-LAN
* Browndown: can provision for a specified energy target.

n'm

Money lsn't All You're Saving

Temperature-aware Scheduling

« Challenge: data centers have
cold aisles (air through floor)
and hot aisles (air sucked out
through machines)

* Variation in temperatures can
lead to extra expense air
conditioning

— Need to draw off all heat

— Cold air cools better than hot
air

— Hot air is cheaper to produce
than cold air

— Need to prevent all areas from
getting to hot

Thermal issues in
dense computer rooms

(i.e. Data centers, Computer Clusters, Data warehouses)

» Heat recirculation
= Hot air from the equipment air outlets is

fed back to the equipment air inlets ¥ - ’
» Hot spots =

s Effect of Heat Recirculation
s Areas in the data center with alarmingly
high temperature
» Consequence

= Cooling has to be set very low to have all
inlet P es in safe operating range

Functional model of scheduling

e Tasks arrive at the data center

* Scheduler figures out the best placement

— Placement that has minimal impact on peak inlet
temperatures

* Assigns task accordingly N
L
B N
Tasks | ——— |Scheduler | —
|

4/19/11

Conceptual overview of
thermal-aware task placement

Task placement determines Peak air inlet temperature
temperature distribution determines upper bound to

l / CRAC temperature setting

Temperature distribution CRAC temperature setting
determines the equipment determines it’ s efficiency
peak air inlet temperature (Coefficient of Performance)

copeacoeerisocaceTio s

g

LTI
Cac slppt o

The lower the peak inlet temperature Coefficient of Performance

the higher the CRAC efficiency

Temperature Scheduling

* Energy usage = heat production on a server
— Less workload, less heat

* Place jobs according to availability of cheap
cooling
— Fewer jobs where harder to cool

— More jobs where cooling more efficient
* E.g. those with coldest air coming in

(source: HP)
bottom
line
There is a task placement that maximizes cooling efficiency. Find it!
Contrasted scheduling approaches
* Uniform Outlet Profile (UOP) o e
— Assigning tasks in a way that tries to achieve F

uniform outlet temperature distribution ™

— Assigning more task to nodes with low inlet
temperature (water filling process)

* Minimum computing energy M n

— Assigning tasks in a way that keeps the

number of active (power-on) chassis as few as ’7
possible [

Inlet
Temperature

— Server with coolest inlet temperature first
* Uniform Task (UT)

— Assigning all chassis the same amount of tasks
(power consumptions)

— All nodes experience the same power
consumption and temperature rise

Delay Scheduling

» Similar goal to Quincy
— Shared clusters with data stored on nodes

— Sequence of jobs accessing data with variable needs
(e.g. 7500 jobs) at low latency (e.g. jobs average ~90s)

* Goal: max-min fairness

— Minimum rate of maximum job or maximum rate for
minimum job (reduce outliers)
* Requires reallocating resources as jobs come & go
* Goal: data locality

— Schedule jobs on nodes that have their data

Problem

When new job arrives and needs to run, do you:
— Kill some jobs to make space
— Wait for some jobs to finish?
Basic scheduler: puts jobs in queue
— When an node needs work, request task from queue
— Sort by jobs with fewest tasks
With short jobs, better to wait (avoids wasted work)
If you wait just for next available machines, small jobs have poor locality
— Unlikely to get a machine with their data, leads to more cross-node/rack
communication
With larger jobs, have sticky slots
— Ajob that is finishing will tend to get rescheduled on the node where it was
just running (because that space was just idled)
* Without queues...
* Means bad assignments tend to persist

Delay Scheduling

* Key idea: better to wait for the right slow when jobs are
fairly short then take the next available one

— When machine is free & needs a task, look for first task that has
data on that machine

— If ajob is skipped more than SkipCount times, run it somewhere
else

« If machines freed frequently and not run, then quickly runs elsewhere
« If machines freed rarely, takes longer to move somewhere else
* E.g. not clock based

¢ Challenges:
— What if one machine has lots of popular data?

— What if there are long running jobs on the machines with your
data?

— ANSWER: get to run if sitting for too long

4/19/11

Comparison to Quincy

* Allows multiple jobs per machine (e.g. 1 per
core)

— Chance of being stuck is much lower, so not need
preemption

* Uses rate of machines being freed up to make
decision

— When considering how long to skip a task before
placing it elsewhere

Overbooking

* Assume each job needs local resources
— CPU, memory, network disk

* Want to allow multiple jobs per machine for
efficiency

* How much can you overbook

— E.g. assign jobs such that worse cases don’t fit?

Overbooking approach

* First: characterize job requirements

— Measure resource usage over time when
standalone

— Determine requirements from trace

— Determine distribution of usage from trace

 E.g.in a period, what is probability of using x% of the
resource?

— Determine tolerance for failure
* |s statistically possible

Overbooking (2)

* Second: assign jobs to machines
— Case 1: worst case behavior of all jobs fits
* Easy
— Case 2: worst case doesn’t fit

* First, make sure common-case usage fits for all
resources

* Second: ensure probability of overbooking a resource
fits requirements

— Look at probability for all jobs to use the resource, combine to
figure probability of it being oversubscribed

Overbooking (3)

* Third: assign jobs to machines
— Make bipartite graph of jobs to
machines they can run on
— Start with most restricted job (e.g.
first one in figure), schedule it first

— If multiple choices, use (for multiple
resources)

* best fit - leaves open more capacity on
other machines

* Worst fit — lots of idle resources locally

