4/14/11

Themes we will see

* Single master if possible
* Strong consistency when important
AutoPilot * Legacy code less important
* Simplicity if possible
— Balance generality with simplicity

AutoPilot Autopilot goal

* Goal: deploy, provision, repair data center applications
— automate as much sysadmin tasks as possible
* Design principles
— fault tolerant like everything else, but not byzantine failures
— simple and good enough when possible
« e.g. repairs only in a few categories
« text file configuration + auditing of changes
* QUESTION: EmulLab seems to offer more. Why?
— Correct at all times, or understandably and documented incorrect
+ state exceptions, handle pathological cases
— Crash-only
+ no explicit shutdown/cleanup

— Replication for availability only * Handle automatically routine tasks

* Workload is fairly small

* Without operator intervention
* No support for legacy apps

AutoPilot services Autopiloted System

* Device manager:
— stores goal state about state system should be in
— strongly consistent using Paxos
— doesn’t do anything but store state
* Goal state, ground truth
* Satellite services
— based on state in DM, take actions to bring system to
correct state
— Poll for changes, but can be told to poll
 avoids lost pushes of data
* Told to pull for low latency

Autopilot control

Application

Autopilot services




Recovery-Oriented Computing

* Everything will eventually fail

* Design for failure
* Crash-only software design

e http://roc.cs.berkeley.edu

Brown, A. and D. A. Patterson. Embracing Failure: A Case for Recovery-Oriented
Computing (ROC). High Performance Transaction Processing Symposium, October 2001.

Centralized Replicated Control
Keep essential control state centralized
Replicate the state for reliability
Use the Paxos consensus protocol

Device manager uses it for ground
truth — goal state of system

ey
Strong consistency
* Expensive to provide

* Hard to build right

Weak consistency
Increases availability

any different models
* Easy to understand Easy to misuse

Very hard to

* Easy to program against

* Simple application understand
design * Conflict management in
application '

4/14/11

Autopilot Architecture

Discover new machines; netboot; self-test
Install application binaries and configurations
Monitor application health

F Fix broken machines

Operational d}ta collection an% visualization

Provisioning Deployment Watchdog Repair

-1

Device Manager

Autopilot abstraction

Self-healing machines

}

Autopilot

Windows Windows Windows Windows
Server Server Server Server

Device Manager

 Strongly consistent (paxos), replicated for reliability
* Stores goal state for system

— Set of physical machines

— Configuration each should have
* Other services pull information from it

* QUESTION: LiveSearch decided this wasn’t reliable
enough. Why?
— Answer: didn’t trust, didn’t want to lose control to another
group, or was it really unreliable?
— Shows that apps can build their own better services on top
of AutoPilot...




Cluster Machines

Remote Remote

4/14/11

5 Storage 3 Storage
execution E execution 3
- -
Autopilot Autopilot
services manager services manager
o Iy
\ \
N NS
l Storage Jata service
Name service Scheduling
Paxos
-~ VN P Ve s
Autopilot Autopilot Autoy Autopi Autopilot
services manager services manager services N services m services manager
]
o o o o o
\
S N N N X

Cluster services abstraction

Reliable specialized machines

l

Cluster services

Autopilot

Windows Windows Windows Windows
Server Server Server Server

Cluster Services

* Name service: discover cluster machines

* Scheduling: allocate cluster machines

* Storage metadata: distributed file location
* Storage: distributed file contents

* Remote execution: spawn new computations

Low-level node services

* filesync: copy files to make sure correct files
prsent

* application manager: makes sure correct
applications running

High-level clusterservices

* Provisioning service:
— Configure new machines according to policy
— Determines what OS image,
« install, boot, test

— New machine asks DM what applications to run

High-level services

* Application Deployment
— apps specify a set of machine types — different
configurations of nodes in service
« front-end web server
* crawler
— apps specify manifest — lists config files + app binaries
needed for machine type
* Deployment service contains config files +
binaries (populated by build process)
— machines ask DM for their configuration, contact
deployment service for needed binaries




4/14/11

Application upgrade

Rolling upgrade built into autopilot
— added to manifest for machine type

— each machine in type will download new code on
next poll

DM instructs groups of machine to upgrade
(to avoid whole-service downtime)

— e.g. 1/10t of each type at a time

Put machine on probably during upgrade in
case it fails, can roll back upgrade

Failure detection

Watchdog service:

— Checks an attribute on a node — reports “ok”, “warning”,
or “error”

— Watchdog service calls node correct if all attributes OK or
Warning (warning is unexpected but not fatal) to generate
extra logging but not alert operators

— Watchdog sensors can be standard (e.g. bios for memory/
disk corruption, OS version check) or app-specific

QUESTION: Why have apps generate their own
watchdogs?

Note: check lots of signals, as just one could still be

working while things fail

Failure Detection Latency

AutoPilot doesn’t detect things immediately

— Down/sluggish machine can affect application latency
SO: what to do?

— Apps can have very short timeouts and retry quickly
— Apps can report such failures to AutoPilot

AutoPilot is generic, its recovery techniques are
not suitable for stuttering latency problems

— E.g. would be overkill, could hurt overall reliability

Failure/recovery

Recovery: do simple things an admin would do automatically
before taking offline

— E.g. restart service, reboot, reinstall, replace

Failed nodes given a repair treatment based on symptoms:

— DoNothing, Reboot, Relmage, Replace

* techs replace computers periodically (days/weeks)

— Based on history (previously healthy computers go to DoNothing)
Repaired nodes marked as on “probation”

— expected to have a few early failures (ignored) but then become

healthy

— if correct for a while, moved to Healthy
All machine affected by new code marked as “probation” or for
expected failures during startup

Other recovery options

* Hot standby to replace a failed machine

— But the machine is idle most of the time and not
contributing

— But apps can handle failures anyway, so why not
make app deal with it until full recovery?

Monitoring service

Collects logs/performance counters from
applications in common format

— provide central view of app

— Real-time data but in SQL DB

Cockpit visualization tool reads data, shows
current status

Alert service sends alert emails based on
triggers/queries in cockpit DB




What AutoPilot doesn’t do

* Load balancing/migration
— This is up to the app

— If the app needs more resources — what then?
« Tell AutoPilot to provision more machines

* Address all issues in the data center
— Network configuration

— Power management/consolidation

4/14/11

AutoPilot Summary

* Provides common tools to:
— install a new machine
— provision apps onto it
— detect failures
— repair failures
— record logs
— monitor app behavior

* BUT:

— not for legacy code (must be packaged for AutoPilot)




