Dryad, Map Reduce and Data-**Parallel Programming**

What is the problem

- QUESTION: What is the problem Map/Reduce and Dryadsolve?
 - You have a large cluster of computers
 - You have a large set of data distributed over
 - You have a computation over the data set you would like to do
- How can you:
 - Make it easy to write the computation
 - Make it easy to get performance from the cluster?

Basic idea

- Let programmers specify the computation
 - E.g. counting words, traversing graphs
- Let the framework handle:
 - Communication
 - Scheduling
 - Data partitioning/replication

Map/Reduce: basic model

- Input: data distributed across a set of nodes
- Map: process/select input values to intermediate values
 - map(string key, string value) → list {string key2, string value2}
- · Reduce: combine all values with shared intermediate key
 - reduce(string key2, list {string values}) --> list {output}

Example Uses

- Note: user just writes:
 - input data specification
 - Map/reduce tasks
 - MR library does the rest! no worries about distribution, FT, parallelism
- Grep
- Map Input: files:
- Map output: matching lines/filenames
- Reduce input/output: matching lines/filenames
- URL access frequency from logs

 Map Input: web server logs
- Map output: key = web page, value = 1 (or more)
- reduce input: web page, list of hits
 Reduce output: web page, sum of hits

Map Reduce under the covers

- Simple idea: what makes it work?
 - Scalability via partitioning + locality
 - Fault tolerance via failure detection/retry
- · Key ideas:
 - partitioning input
 - Grouping output locally to disk
 - Reduce pulls results
 - Single manager coordinates things

What Map/Reduce does

- Start a master one copy of the program to direct everything else
 - QUESTION: is this a single point of failure? Does it matter?
- Master splits input data into 16-64 MB chunks
 - How does it know the input data, size?
 - files must be specified some how
- Master picks idle workers for map & reduce tasks

Map task

- · Map library: Assign chunks to workers
 - QUESTION: How?
 - · Anyway reasonable; want locality within chunk if possible
 - Library reads in data in some granularity, parses key/ value pairs, invokes map
- · User map code:
- Execute map task, write output
- Map library:
 - buffer outputs into R (# reduce tasks) local files
 - Notify master when done, locations on disk (file names?) of intermediate files

Reduce task

- Reduce worker told which map nodes to pull from
 - Groups intermediate data by intermediate key
 - Process key + list of intermediate values
 - Write back to a single file per task (could be many intermediate keys in a reduce task)
- QUESTION: how are reduce tasks assigned to nodes?
 - Could be separate nodes
 - Could be on nodes with lots of intermediate results for the key range assigned to the reduce task

Why does this work?

- · Partitioning of input allows easy scalability
- Mixing between map and reduce (O(M nodes x R node)) not too bad...
- Note: saving state to intermediate storage takes time (slow I/O) ...
- · QUESTION: is it important?
- · NOTE: not streaming/pipelined

Fault Tolerance

- · What can fail?
 - Master: retry whole operation
 - Mapper: re-execute map on original data
 - Reduce: refetch data from mapper (mapper need not re-execute)
 - Why is this possible? Mapper writes output to disk, not pushed to reducer in memory
 - Atomically commit data via rename (write temporary, rename to final version at output) to prevent duplicates in output

More optimizations

- Combiners
 - What if you are emitting "1" for lots of words in a document and reducing produces the count; creates lots of intermediate data
 - SOLUTION: combiners to locally combine/aggregate at mapper before reduce
 - Is a version of reduce function that writes intermediate values not final outputs
- · Sequencing
 - Can connect a set of M/R tasks together for richer analysis
 - Output of one reduce phase is input to next map phase (e.g. 5-10 for web indexing)

What's wrong with MapReduce?

- Literally Map then Reduce and that's it...
 - Reducers write to replicated storage
- Complex jobs pipeline multiple stages
 - No fault tolerance between stages
 - Map assumes its data is always available: simple!
- Output of Reduce: 2 network copies, 3 disks
 - In Dryad this collapses inside a single process
 - Big jobs can be more efficient with Dryad

Complaints about Map/Reduce

- · Parallel databases do it already and better
 - Map/reduce easy to represent as a query (select, apply function, group by:
 - SELECT custID, sum(amount)
 FROM Sales
 WHERE date BETWEEN
 "12/1/2009" AND "12/25/2009"
 GROUP BY custID
 - like map(cust ID) if date in range emit (cust ID, amount); reduce(cust id, list amounts) emit sum (amounts)

More specifics

- Databases store data in more efficient formats:
 - row vs column
 - indexes
 - compressed
- RESPONSE: can M/R do this?
 - Can integrate into input/output format
 - Can use M/E to preprocess data into efficient formats & compress

More complaints

- · Cannot really do join:
 - select data from table 1 and matching data from table 2 (two different inputs to map task) and output matches ONLY equijoin; and must scan both inputs completely
 - Reduce needs to do cross product of inputs from two tables
 - Big blow up; cannot start until all inputs available
 - Need to scan both completely

Dryad

- Map/Reduce has a single flow of data:
 - partition data to mappers, then mix to reducers, then output
 - Can sequence multiple jobs in a row
- Dryad goal: more flexible data flow with more operators
 - Can do more traditional database queries

Motivation

- Complex queries in SQL hard to express as map/ reduce:
 - The task is to identify a "gravitational lens" effect: it finds all the objects in the database that have neighboring objects within 30 arc seconds such that at least one of the neighbors has a color similar to the primary object's color.
- In SQL: select a star, then select all neighbors of the star, then find ones with similar color + coordinates close enough
- General dryad goal: support execution of dataflow graphs

Advantages of DAG over MapReduce

- · Big jobs more efficient with Dryad
 - MapReduce: big job runs >=1 MR stages
 - reducers of each stage write to replicated storage
 - Output of reduce: 2 network copies, 3 disks
 - Dryad: each job is represented with a DAG
 - intermediate vertices write to local file

Dryad Properties

- Provides a general, clean execution layer
 - Dataflow graph as the computation model
 - Higher language layer supplies graph, vertex code, channel types, hints for data locality, ...
- · Automatically handles execution
 - Distributes code, routes data
 - Schedules processes on machines near data
 - Masks failures in cluster and network

But programming Dryad is not easy

22

Dryad	Map-Reduce
• Many similarities	
Execution layer	 Exe + app. model
• Job = arbitrary DAG	 Map+sort+reduce
 Plug-in policies 	 Few policies
• Program=graph gen.	 Program=map+reduce
• Complex (⁴features)	Simple
 New (< 2 years) 	 Mature (> 4 years)
Still growing	 Widely deployed
• Internal	 Hadoop

Dryad DataFlow

- M/R does two things: partition + mix
- Dryad has more flexibility:
 - pointwise connection (send all data from node a to node b)
 - Can send from Ai to Bj, or from Ai to B (combine at one node) or from A to Bi (distribute/fan out)
 - bipartite (like reduce; send results from all As to all Bs
 - Can mix: send some data to different places
 - e.g send summary to a node that then propagates to all workers
 - Dryad has lots of standard operators: hash, sort, merge

How to think about Dryad

- Map-Reduce: shell scripts with pipes
- Dryad: python programs
- Decompose map-reduce into component parts, so can be re-used
 - Input parsing
 - Data distribution
 - Reduction/aggregation
 - Sorting

 - MergingCommunication channels
 - Counting
 - Hash table

Scheduling at JM

- General scheduling rules:
 - Vertex can run anywhere once all its inputs are ready
 - · Prefer executing a vertex near its inputs
 - Fault tolerance
 - If A fails, run it again
 - If A's inputs are gone, run upstream vertices again (recursively)
 - If A is slow, run another copy elsewhere and use output from whichever finishes first

Optimizing Dryad applications

- General-purpose refinement rules
- Processes formed from subgraphs
 - Re-arrange computations, change I/O type
- · Application code not modified
 - System at liberty to make optimization choices
- High-level front ends hide this from
 - SQL query planner, etc.

Dryad example 1:

- SkyServer Query

 3-way join to find gravitational lens effect
- Table U: (objld, color) 11.8GB
- Table N: (objld, neighborld) 41.8GB
- Find neighboring stars with similar colors:
 - Join U+N to find
 - T = N.neighborID where U.objID = N.objID, U.color
 - Join U+T to find

U.objID where U.objID = T.neighborID and U.color ≈ T.color

