Dryad, Map Reduce and Data-
Parallel Programming

4/12/11

What is the problem

* QUESTION: What is the problem Map/Reduce
and Dryadsolve?

— You have a large cluster of computers

— You have a large set of data distributed over
computers

— You have a computation over the data set you would
like to do

* How can you:
— Make it easy to write the computation
— Make it easy to get performance from the cluster?

Basic idea

* Let programmers specify the computation
parts

— E.g. counting words, traversing graphs
* Let the framework handle:

— Communication

— Scheduling

— Data partitioning/replication

Map/Reduce: basic model

* Input: data distributed across a set of nodes

* Map: process/select input values to
intermediate values

— map(string key, string value) = list {string key2,
string value2}

* Reduce: combine all values with shared
intermediate key

—reduce(string key2, list {string values}) --> list
{output}

Logical Model

T T T T T]
! b o g
P PP 999
lnlermedmre‘ kl:v kv k2w [‘ kl:v [k3:v kdiy ‘ kv kS:iv ‘ kv ‘ kv k3uv ‘
N T

Example Uses

* Note: user just writes:

— input data specification

— Map/reduce tasks

— MR library does the rest! no worries about distribution, FT, parallelism
* Grep

— Map Input: files:

— Map output: matching lines/filenames

— Reduce input/output: matching lines/filenames
* URL access frequency from logs

— Map Input: web server logs

— Map output: key = web page, value = 1 (or more)

— reduce input: web page, list of hits

— Reduce output: web page, sum of hits

Execution In parallel

——————————— - ——————-=-a —————
r "7 7 Map Task 2

[Eros [ovey]
1 Fartioing Fancion |

4/12/11

Map Reduce under the covers

Simple idea: what makes it work?

— Scalability via partitioning + locality

— Fault tolerance via failure detection/retry
Key ideas:

— partitioning input

— Grouping output locally to disk

— Reduce pulls results

— Single manager coordinates things

What Map/Reduce does

* Start a master — one copy of the program to
direct everything else

— QUESTION: is this a single point of failure? Does it
matter?
Master splits input data into 16-64 MB chunks
— How does it know the input data, size?
« files must be specified some how

Master picks idle workers for map & reduce
tasks

Map task

Map library: Assign chunks to workers
— QUESTION: How?
* Anyway reasonable; want locality within chunk if possible

— Library reads in data in some granularity, parses key/
value pairs, invokes map

User map code:

— Execute map task, write output

Map library:

— buffer outputs into R (# reduce tasks) local files

— Notify master when done, locations on disk (file
names?) of intermediate files

Reduce task

Reduce worker told which map nodes to pull

from

— Groups intermediate data by intermediate key

— Process key + list of intermediate values

— Write back to a single file per task (could be many
intermediate keys in a reduce task)

QUESTION: how are reduce tasks assigned to

nodes?

— Could be separate nodes

— Could be on nodes with lots of intermediate results
for the key range assigned to the reduce task

Why does this work?

Partitioning of input allows easy scalability

Mixing between map and reduce (O(M nodes
x R node)) not too bad...

Note: saving state to intermediate storage
takes time (slow 1/0) ...

QUESTION: is it important?
NOTE: not streaming/pipelined

Fault Tolerance

* What can fail?
— Master: retry whole operation
— Mapper: re-execute map on original data

— Reduce: refetch data from mapper (mapper need
not re-execute)
* Why is this possible? Mapper writes output to disk, not
pushed to reducer in memory
« Atomically commit data via rename (write temporary,

rename to final version at output) to prevent duplicates
in output

4/12/11

More optimizations

* Combiners

— What if you are emitting “1” for lots of words in a

document and reducing produces the count; creates lots
of intermediate data

— SOLUTION: combiners to locally combine/aggregate at
mapper before reduce

* Is aversion of reduce function that writes intermediate values not
final outputs

* Sequencing
— Can connect a set of M/R tasks together for richer analysis

— Output of one reduce phase is input to next map phase
(e.g. 5-10 for web indexing)

What’s wrong with MapReduce?

Literally Map then Reduce and that’s it...
— Reducers write to replicated storage
Complex jobs pipeline multiple stages
— No fault tolerance between stages
* Map assumes its data is always available: simple!
Output of Reduce: 2 network copies, 3 disks
— In Dryad this collapses inside a single process
— Big jobs can be more efficient with Dryad

Complaints about Map/Reduce

* Parallel databases do it already and better

— Map/reduce easy to represent as a query (select,
apply function, group by:
« SELECT custID, sum(amount)
FROM Sales
WHERE date BETWEEN
“12/1/2009” AND “12/25/2009”
GROUP BY custID

— like map(cust ID) if date in range emit (cust ID,
amount); reduce(cust id, list amounts) emit sum
(amounts)

More specifics

* Databases store data in more efficient
formats:

— row vs column
—indexes
— compressed
e RESPONSE: can M/R do this?
— Can integrate into input/output format

— Can use M/E to preprocess data into efficient
formats & compress

More complaints

* Cannot really do join:

— select data from table 1 and matching data from
table 2 (two different inputs to map task) and
output matches ONLY equijoin; and must scan
both inputs completely

— Reduce needs to do cross product of inputs from
two tables

* Big blow up; cannot start until all inputs available

— Need to scan both completely

Dryad

* Map/Reduce has a single flow of data:

— partition data to mappers, then mix to reducers,
then output

— Can sequence multiple jobs in a row
* Dryad goal: more flexible data flow with more
operators

— Can do more traditional database queries

4/12/11

Motivation

* Complex queries in SQL hard to express as map/
reduce:

— The task is to identify a “gravitational lens” effect: it
finds all the objects in the database that have
neighboring objects within 30 arc seconds such that at
least one of the neighbors has a color similar to the
primary object’s color.

* In SQL: select a star, then select all neighbors of
the star, then find ones with similar color +
coordinates close enough

* General dryad goal: support execution of
dataflow graphs

Advantages of DAG over MapReduce

* Big jobs more efficient with Dryad
— MapReduce: big job runs >=1 MR stages
« reducers of each stage write to replicated storage
* Output of reduce: 2 network copies, 3 disks
— Dryad: each job is represented with a DAG
« intermediate vertices write to local file

Dryad Properties

* Provides a general, clean execution layer
— Dataflow graph as the computation model

— Higher language layer supplies graph, vertex code,
channel types, hints for data locality, ...

* Automatically handles execution
— Distributes code, routes data
— Schedules processes on machines near data
— Masks failures in cluster and network

But programming Dryad is not easy

Dryad Map-Reduce

IT\§

* Many similarities

* Execution layer * Exe + app. model
* Job = arbitrary DAG * Map+sort+reduce
* Plug-in policies * Few policies

* Program=graph gen. * Program=map+reduce
Complex (f*features) ¢ Simple

* New (< 2 years) * Mature (> 4 years)

* Still growing * Widely deployed

* Internal * Hadoop

N A A

Data-Parallel Computation

Application |

Sawzall

Language

Map-
Parallel Reduce

Databases

Execution

GFS

BigTable I[S3

Storage

al i

4/12/11

2-D Piping Dryad Job Structure
4 o)
* Unix Pipes: 1-D
grep | sed | sort | awk | perl
L R L L _’- Input Channels
- Output
_ J files
(. Dryad: 2-D A

greplooo | SedSOO I SorthOOI aWkSOO I per|50

N

L

Vertices
), (processes) .
Channels WordCount in Dryad
Finite streams of items
« distributed filesystem files Word:n e) O O
(persistent) { ‘
. Reduce/
Items . SMB/NTFS files wiﬁ?:ort 5 agegruecgeate
(temporary) words
* TCP pipes
M (inter-machine) Distribute
* memory FIFOs Word:n .
(intra-machine) count Map word->n
’QUEST'ON: Why"’ Word:n
Runtime

Dryad DataFlow

* M/R does two things: partition + mix
* Dryad has more flexibility:
— pointwise connection (send all data from node a to
node b)

« Can send from Ai to Bj, or from Ai to B (combine at one
node) or from A to Bi (distribute/fan out)

— bipartite (like reduce; send results from all As to all Bs
— Can mix: send some data to different places
* e.g send summary to a node that then propagates to all
workers
— Dryad has lots of standard operators: hash, sort,
merge

Job schedule Data plane
e [Files, FIFO, Network

Control plane

Graph Types

x
®>=C)|| 8>=D)
A

D/E
4 F
c\A/

z % T x
E=(AS>=C>=88) £ (AS >= BS) (A>=C>=D>=B) || (A>=F>=8)

Scheduling at IM

* General scheduling rules:
— Vertex can run anywhere once all its inputs
are ready
* Prefer executing a vertex near its inputs
— Fault tolerance
« If A fails, run it again

+ If A’s inputs are gone, run upstream vertices
again (recursively)

« If Ais slow, run another copy elsewhere and use
output from whichever finishes first

4/12/11

How to think about Dryad

* Map-Reduce: shell scripts with pipes
* Dryad: python programs

* Decompose map-reduce into component parts, so can be re-used
— Input parsing
— Data distribution

— Reduction/aggregation
— Sorting
— Merging
— Communication channels
— Counting
— Hash table
Dynamic Aggregation
S S S S S S
. T
static
8415 SZS #15 #35 #35 #ZS
rackw
dynamic T

Optimizing Dryad applications

* General-purpose refinement rules

* Processes formed from subgraphs

— Re-arrange computations, change I/0 type
Application code not modified

— System at liberty to make optimization
choices

High-level front ends hide this from
user

- SQL query planner, etc.

Fault Tolerance

E‘E(@ = "E‘

Restart failed vertex

.}

Restarted parent for failed link

4/12/11

Dryad example 1:
SkyServer Query

» 3-way join to find gravitational lens effect
* Table U: (objld, color) 11.8GB

* Table N: (objld, neighborld) 41.8GB

* Find neighboring stars with similar colors:

— Join U+N to find
T = N.neighborID where U.objID = N.objID, U.color
— Join U+T to find
U.objID where U.objID = T.neighborID
and U.color = T.color

SkyServer query

select
u.color,n.neighborobjid

from u join n

where

u.objid = n.objid

u: objid, color
n: objid, neighborobjid
[partition by objid]

[distinct]

[merge outputs]

(u.color,n.neighborobjid)

[re-partition by
n.neighborobjid]

[order by n.neighborobjid]

select

u.objid
from u join <temp>
where

u.objid = <temp>.neighborobjid
and

|u.color - <temp>.color| < d

