Data Centers

Growth of Big Services

* Big data: web grows, data collection grows

* Big customers: number of people connecting
grows, bandwidth grows, time connected
grows

* Big competition: more advanced uses of data
improve customer experience

Data center as a computer

* Big applications treat a whole data center (or
set) as a computer upon which to run
— Service layer provides abstractions above the OS

Data Center Hardware

* Driven by price/performance for workload

Architecture Overview

* Driven by price/performance for workload
» Server: 1 urack
* Rack: 40 servers + gigabit ethernet switch
— 1 gb ethernet for efficiency; locality matters a lot
* Storage: either NAS/SAN or local disks

— NAS/SAN easier to program, ignore locality, but hard
to scale (and expensive), must be made highly reliable

— GFS (local disks) easier to scale, can take advantage of
locality, more reliable

Data Center Properties

* Homogeneous platform

— Clusters tend to all be similar machines to make
purchasing/management more efficient

— Also makes coding more efficient: don’t need to
worry about widely varying capacities
* Small # platform types
— Storage light: 2-4 cores, boot disk
— Storage heavy: 16-24 disks

4/7/11

Scaling Google Down

* Why is WSC important outside Google/Microsoft/
Amazon?
— Economics of low-end hardware apply everywhere
— Small organizations might grow big

* Do private clouds make sense for most
organizations?

— Perhaps not: can lose benefits of multi-tenancy that
makes it pay off (non-correlated peak loads), low
capital expense

— Power costs a lot more for small clouds, as do
operational staffs

What's different about WSC

* Poorly connected compared to super
computers
* Fault behavior important
— Instead of keeping all nodes running, keep enough
running but let others fail
* Energy consumption important
—50% of cost of data center over time is power

4/7/11

Warehouse compared to big SMP

* When does a big SMP (128 cores) help?
— Lots of fine-grained communication

— Does this exist for data center workloads?

* sometimes; could make search a lot faster if it ran on
one machine

* Challenge: workloads (at Google) can exceed
the capacity of a single machine

— still pay latencies of networking, lose much of the
single machine benefit

Cost Efficient Hardware

* Key observation 1: if problem fits on a
machine, can get great speedup via large SMP
if fine-grained parallelism is needed (can be
cost effective)

* Key observation 2: if problem is larger than a
machine, a big SMP doesn’t help much, costs
more, and doesn’t simplify coding

* s0: go for commodity parts, pushed down by
sales at BestBuy

Scalability of nodes

10.00 Pigh communication

Light communication:
scales well to lots of nodes
Heavy communication:
Scales poorly once you
Have a few nodes

Normalized execution time

number of nodes

benefit of large nodes declines
for larger clusters, is small for light
communication

Processor sizing

* What processor is needed?

— High-end? e.g. top-of-the-line Core i7/xeon?
« cost/performance can be high
* Code is memory bound; higher clock speeds and larger caches may

not help

— Medium? Google says yes ...

— Low end: Atom, Via Nano, Arm?
« Better price/performance, performance/watt

* But: worse
— scheduling: harder to schedule at fine grain, more accurate load
balancing needed
— More networking needed to connect everything
— Latency matters for some workloads; it isn’t all memory and 1/0
+ Related work: Gordon, FAWN push this for 1/0 bound lookup
workloads

Latency within a Datacenter

* Disk is the worst thing to access
— Local memory best
— Then memory of other node in rack
— Then memory of other node in data center
— Then disk

— Disk bandwidth similar to bandwidth from other
nodes in cluster

Failures

* Scale of data center leads to failures
— 1.2 — 16 restarts per server per year
— 4% of disks fail every year

Power & Related Costs [Will] Dominate

* Assumptions:
— Facility: ~$88M for 8MW facility
— Servers: Roughly 46k @ $1.45k each
— Server power draw at 30% load: 80%
— Commercial Power: ~$0.07/kWhr
— PUE:15

Monthly Costs

= Servers

= Networking
Equipment
Power Distribution
& Cooling

™ Power

¥ Other Infrastructure

3yr server, 4yr net gear, & 10 yr infrastructure amortization

* Observations:
34% costs functionally related to power (trending up while server costs down)
Networking high at 8% of costs & 19% of total server cost

Updated from; d m/2008/11/28/CostOfPowerint ters.asps
2010/3/15 http://perspectives.mvdirona.com 15

Power Usage in Datacenters

* Power is a large cost
— Pay large cost for peak power — must build equipment, utility
must guarantee to provide
— 20% of facility cost is power redundancy (backup
— Actual power use not as expensive
« Often reported as PUE — power usage effectiveness
— All computing hardware = 1.00
— Everything else: adds on
« if same power for cooling, power distribution, then PUE is 2
* If only 20% more needed, then PUE is 1.2
— State of the art: 1.2
* Local batteries on computers (avoid big UPS)
* Better power distribution
« Efficient cooling: build in cold places

Where Does the Power Go?

* Assuming a good data center with PUE ~1.5
— Each watt to server loses ~0.5W to power distribution losses & cooling
— IT load (servers & storage): 1/1.5 => 67%
— Network gear <4% total power (5.8% of IT load)
* Power losses are easier to track than cooling:
— Power transmission, conversion, & switching losses: 11%
— Cooling losses the remainder:100-(67+11) => 22%
¢ Observations:
— Utilization & server efficiency improvements very highly leveraged
— Cooling costs unreasonably high
— PUE improving rapidly

2010/3/15 http://perspectives.mvdirona.com 17

Where does power go?

* Within useful
equipment:
— CPU is largest
— DRAM is next
— Disks lower (not used as

much)

* CPU power has been
reduced by Intel, but
memory not as much

4/7/11

Data Center Software

* Platform software:
— bios, kernel, os services (e.g. DNS)
* Cluster infrastructure — distributed systems
services
— RPC
— MapReduce
— Dryad
— Hadoop
— GFS, BigTable, Chubby Sawzall
* Applications (SaaS)
— GMail, search

Data center workloads

* Interactive workloads:
— Lots of request parallelism
* millions of people submitting independent requests
— Lots of data parallelism
* Indexes of the whole web
— Short-running requests for low latency
« Simplifies scheduling/resource consumption
* Batch workloads: typically data processing
— Lots of data parallelism: cached data, logs

Data Center Workloads

* Request-level parallelism
— Independent requests

— Challenge: take advantage of parallelism, don’t lose it
through serialization

* Data Parallelism
— Big data sets, read-mostly

— Gmail: smaller individual data items, but typically not
shared

* Workload churn:
— Saas allows frequent upgrades: replace pieces every

week/month/year depending on level (infrastructure is the

slowest to be replaced ...)

Core Reliability/Performance
techniques

* All seen before:
— Replication for perf/avail
— Partitioning for perf/avail
— load balancing for perf
— Health check/watchdogs for avail
— Integrity checks for avail — asserts, checksums
— Compression for perf
— Eventual consistency for perf/avail
* Note: redundant execution not widely used

because too expensive: double the number of
machines

Infrastructure Software

* Resource management:

— scheduling allocation across a DC: priorities,
quotas, task mgmt

— Abstractions
— Automation

— Specify job requirements (CPU, disk, memory,
network) as input

Hardware abstraction

* Like OS: not set of disks, but GFS
— GFS: files
— Chubby: locks
— Dynamo: key/value
— Message passing — protocol buffers, RPC

4/7/11

Management

* Deploy software to a cluster

— Copy bits

— Launch services

— Upgrade software
* Monitoring

— Watchdogs, heart beats

— Performance monitors:

« fault tolerance causes failures to look like loss in performance
* Key idea: developing software means developing a
deployment/management infrastructure

— Cost of software is development + operations, want to keep
operations low

— Automate as much as possible

Monitoring Infrastructure

Service level dashboard: online monitoring

— operator can figure out how a service is behaving,
look at rates & derivatives to see disruptions

— Platform monitoring: is hardware running?
« Can be masked by fault tolerant software
» Performance Debugging: offline/testing

— Black box: analyze network, look for statistical
inferences

— Instrumentation: modify code to log, annotate data
packets

Programming Frameworks

* Simplify job of common programming tasks
— Map/Reduce for parallel data analysis
— BigTable/Dynamo handle data partitioning
— ProtocolBuffers handle data serialization

* Allow graceful upgrade

— support version n + n-1 + n+1 at the same time (or
two of the three) for rolling upgrades

Utilization & Economics

« Server utilization problem
— 30% utilization VERY good &10% to 20% common
+ Expensive & not good for environment
— Solution: pool number of heterogeneous services
« Single reserve capacity pool far more efficient
« Non-correlated peaks & law of large numbers
— Example:
«+ 1/0 bound workloads + memory/CPU bound workloads
Charge back models drive good application owner behavior
— Cost encourages prioritization of work by application developers
— High scale needed to make a market for low priority work

Resource Consumption Shaping

Egress chagged at 95" percentile

Resourced optimization applied to full DC

Network charge: base + 95th percentile
— Push peaks to troughs
— Fill troughs for “free”
— Dynamic resource allocation
* Virtual machine helpful but not needed
— Symmetrically charged so ingress effectively
Power also often charged on base + peak """
— Push some workload from peak into “free” troughs
— S3 (suspend) or S5 (off) when server not needed
« Disks come with both IOPS capability & capacity
— Mix hot & cold data to “soak up” both resources
Incent priority (urgency) differentiation in charge-back model
— Charge application groups based on their resource usage + power

Research Problems

Power:
— as workload varies, how do you make power consumption
vary proportionally

* Processors can be turned down, but disks take a long time to spin
down

* Memory consumes power for refresh
Utilization:
— Interactive servers have low utilization to reduce queuing
— Idle periods are short (1-100 ms)
Solutions:

— Consolidate workload onto fewer machines
* but moving data expensive ...

4/7/11

