Cloud Computing

Next up

* Warehouse scale computers

— How to build/program data centers
* Google software stack

— GFS

— BigTable

— Sawzall

— Chubby

— Map/reduce

What is cloud computing

* lllusion of infinite computing resources available
on demand

— Scale-up for most apps
* Elimination of up-front commitment

— Small initial investment, scale only as needed
* Pay-per-use on short-term basis

— transfer purchase risk (will equipment be used?) to
cloud provider

* Result: Cost-associativity

— Use of 1 CPU for 100 hours costs the same as 100
CPUs for one hour

Historical Context

* Utility computing — late 1960’s
— Genesis of Multics at MIT/GE

— Central pool of mainframes serve dial-up
customers

— Developed as time-sharing bureaus
* Single server, many clients
— No real connectivity between servers

Death of Utility Computing

* Killer Micros: cheap PCs that afforded more
flexibility, more power then central computer
— text terminals couldn’t compete on flexibility, GUI

— Micros more cost effective EXCEPT for
management

* upgrades, patches, software installs

Rise of Cloud Computing

» Data centers ride commodity-part tide

— Computing in the large now similar in price to client-
side computing

Internet properties develop technology to

efficiently deploy, manage, serve large clusters

— container-based data centers

— scalable, replicated, distributed, reliable storage

* Rich programming models allow better client-side
Ul

— AJAX, JavaScript, HTML

4/5/11

Enabling Technologies

* Virtualization
— For platform-as-a-service and remote management
* Web Services
— XML-RPC, SOA, etc. — APIs to services
* Cluster management experience by large internet
companies
— E.g. Amazon, Google, Microsoft
* Cluster management software
— Storage: GFS, Dryad

Cloud Computing Models

* First wave: Software-as-a-Service (SaaS)
— Rather than install software on customer
machines, run it in a provider data center
* E.g.: HotMail, Salesforce.com
— Web-scale software: serve everybody

Software-as-a-Service

* Think GMail, google docs

* What are the benefits?

— No end-customer management; provider can do on-
line upgrades, provisioning

— No hardware purchase

— Vendor sees how customer uses software, can adapt
* What are the downsides?

— The internet goes down

— Edge bandwidth can be low

— Browser lacks polish of real Uls

Platform-as-a-Service

* Second wave (PaaS)
— Providers supply generic platform for running
Software-as-a-Service AND collaborative web
software

* Allow third parties to host their applications on
common infrastructure

* Google AppEngine, Windows Azure (sort of)
— Still API-rich

* Provide many services (load balancing, request
distribution, scheduling)

4/5/11

Infrastructure-as-a-Service

* Provide virtual machines, networking
— Augment with higher level services:
* Storage
* Monitoring
* Security

* Customer provides complete software stack

* Prevents lock in

— Few APIs to write against beyond data
management

Coming: Data as a service

» Step 1: storage as a service

— Amazon Simple Storage Service

— Windows Sky Drive

— Cheaper than managing storage locally
* Step 2: data as a service

— Windows Azure Data Market
* Rent data from someone else rather than collecting your
own
* E.g make large data sets available for sale
— Geographical databases
— Historical data sets (e.g. weather)

What drives Cloud Computing

* Economics:

— Cost of providing computing services locally
— Utilization of enterprise infrastructure
— Provisioning for worst-case

Elastic Provisioning

* Companies must provision for worst case
— Leads to low utilization (1-20%) most of the time
— Leads to overload some of the time (slashdot effect)
— Hard to grow rapidly if popularity surges
* e.g. doubling every day
* May lose customers if bad service

* Cloud provisioning can start large, multiplex
machines over many customers
— Higher average utilization
— Higher resource availability to surging sites
— Cheap to decommission resources as popularity falls

Cost of Provisioning

* Within a company:

— Real estate/power is expensive (often better used for
office space)

— Lacks large economies of scale

— Management typically 1 person 10-100 machines
* Within a data center:

— Put where land/power is cheap

— Buy in bulk (containers, thousands of machines,
gigabits of bandwidth)

— Low management overhead: lots of self-managing
systems, 1 person/ 1000-10,000 machines

* Cloud Computing User: Static provisioning
for peak - wasteful, but necessary for SLA

Capacity

Machines

Demand

Time
“Statically provisioned” “Virtual” data center
data center in the cloud

Unused resources

« Underutilization results if “peak” predictions
are too optimistic

Capacity
Unused resources

Resources

Time

Static data center

Elastic Provisioning (2)

* Billing based on usage
— Shifts risk from customer to provider

— Separates cost of memory, 1/0, disk, CPU and bill
appropriately

— Reduces risk of trying cloud computing
* Shifts capital expenses (buying things) to

operational expense (cost of providing
service)

— Small upfront cost good for starting out

4/5/11

When is data center computing
cheaper?

* Unpredictable/fluxuating workloads
— Expensive to provision your own
— Good for:
« startups who don’t know their popularity

* big companies with predictable peak loads (e.g. christmas,
olympics)

* Not super-CPU intensive

— Raw CPU, memory, disk is cheaper locally (not scalable,
not replicated)

— Extra charge for renting relatively small (2.5 x for CPU,
20-50% for disk)

— QUESTION: Why disk cheaper? it must be replicated

Cloud Economics

* Some costs cheaper in cloud
— Fixed costs of buildings, buy machines, power
* Cheaper when bought in buld
— Variable costs cheaper
* Bandwidth much cheaper in bulk (e.g. 10x)

* System management much cheaper (e.g. 10-100x)
— Massive redundancy
— Massive homogeneity

* Amazon Elastic Compute Cloud (EC2)
» “Compute unit” rental: $0.10-0.80/hr.
o 1 CU = 1.0-1.2 GHz 2007 AMD Opteron/Xeon core

Small - $0.10 /hr 32-bit 1 1.7 GB160 GB
Large - $0.40 / hr 64-bit 4 7.5 GB850 GB - 2 spindles
\ XLarge - $0.80 / hq 64-bit \ 8 \ 15.0 GB<1 690 GB — 3 spindles

« Billing rounded to nearest hour; pay-as-you-go
storage also available
» A new paradigm (!) for deploying services?

* Cloud Computing saves Energy?
» Don’t buy machines for local use that are often idle
» More efficient cooling
+ Newest data centers are air cooled only using outside air
+ Better to ship bits as photons over fiber vs.
ship electrons over transmission lines to spin
disks, power processors locally
o Clouds use nearby (hydroelectric) power
o Leverage economies of scale of cooling, power distribution

What apps can move to the cloud?

* Compute over same data multiple times
— Amortize cost of uploading data

* Perfectly scalable parallel apps (batch)
— Can compute N times faster on N more machines
— E.g. NY times, WA post scanning documents

* CPU/data intensive apps for mobile devices
— provide heavy lifting, data persistence

* Apps with widely variable resource demands
— Animoto rendering service

Differences to App Writers

* State no longer lives in a file system

— Storage systems for shared data (e.g. S3,
databases) instead

* Applications scale both ways
— Up for bigger loads

— Down for multi-tenancy
« Idle cycles aren’t free

4/5/11

What apps cannot move to the cloud?

* Video games?

— Heavy client-side CPU component
— But:

* Compute graphics in cloud and stream to client
* OnlLive.com

* Banking
— Need better security
* Offline apps

Cloud Computing Platforms

Before Amazon:
— Rackspace, Sun Grid Compute Facility
— Real machines, no virtualization
— QUESTION: why a problem?
* Cannot scale down
* Must fully utilize machine (no sharing)
Amazon EC2:
— Virtual machine + set of images
— Services: block storage, database, content distribution
Google AppEngine
— Python/Java environment for web apps

— Google handles scalability with BigTable, load balancing, scaling,
authentication

* Lock-in

Platform Issues

— If you write for Windows Azure, you will always
run on Windows Azure (and pay rent)
— Same for AppEngine

Cloud vs. Grid

* Grid: more about batch scheduling parallel jobs
— Each machine generally runs only jobs for one customer
— Jobs typically use multiple machines
— Jobs are not interactive
— Big data set, large data objects
— Scientific computing
e Cloud

— Multi-tenancy (multiple customers on a machine)
— Resource-based billing

— Public (often)
— Fine-grained storage

More platforms

* Windows Azure
— .net execution environment, like a JVM
— Storage in a file system, database

— Less than a whole machine, no choice of OS, but can
run almost-arbitrary applications

* Who wins?

— AppEngine very limited in what it can do, but does
more for you.

— EC2 most flexible — run any code — seems to have
most marketshare now

* For apps with simple scalability, services are enough

Challenges

* Getting data into clouds

— Bandwidth at endpoints much lower than within
cloud.

— Loading large data sets can be slow
— Can actually ship disks now...
* Efficiency

— How can you use idle CPU cycles of interactive web
sites?

* They demand low latency, cannot have more than 40%
utilization or so unless they fall over under loa

« Idle periods are often short (10ms-1sec), to short for
condor-style scheduling

4/5/11

Cloud Computing Issues

Infrastructure

~ How doyou build a data center?
Programming model

— How doyou write an app for the cloud?
- Map/reduce

~ Aaure, AppEngine
Reliability/scalability

~ How do you write apps to have these?
Storage

~ Whats the right storage abstraction?

Security
~ How do you provide the security of locally-controlled, off-the-internet nodes?
How do you store the data you trust
How do you trust the CPU to compute properly
How o you trust the service to maintain your privacy
Would Barnes & Noble host on Amazon?

Efficiency

~ How do you make data centers efficient (power and computing)?
= Theystill may have low utiization

Cloud Programming models

Data-driven programming
— Examples:
* Map-reduce
* Dryad/Ling
* Pig
— Goal: how express computation over distributed data, flow of data
through system
Data-drive web sites
— Google App Engine
Interactive web sites
— Example:
* Google search infrastructure
— Challenge:
* Low latency response from many servers

4/5/11

