3/31/11

Distributed Shared Memory:
Treadmarks

Origins of the idea

* N-way Multiprocessors are more expensive than
N uniprocessors
— expensive interconnect networks
— smaller base to amortize costs

* Shared memory programming is easier than
message passing
— Up for debate now

* Hypothesis: we run parallel programs on a
network of workstations more cheaply than on
an SMP

Technology Motivation

* Low-latency networks (ATM) became available
* High performance workstations (Sparc, Alpha)
also available
* Non-cache-coherent supercomputers could
also do coherence in software
— Intel Paragon
— Thinking Machines CM-5

Origins of the Idea

* Kai Li, 1986: vy
— Page-based DSM — uses MMU
— Sequential consistency — same as SMPs
— Looked at page assignment
* do pages have a “home”, and where
— Page lookup
* How do you find an up-to-date copy of a page?

Key concept

* SMP has shared physical memory
— All processors can access the same DRAM
* DSM is shared virtual memory
— OS coordinate access to provide illusion of shared
physical memory
— Can look like DRAM is a L-(2,3,4) cache of a larger
address space

Other alternatives

* Remote reference
— Provide commands to load/store to a remote
machine
— No cache coherence
* QUESTION: could you use a parallel
programming language on Treadmarks?

« if it is shared memory, probably yes, and if granularity
matches




3/31/11

Advantages of DSM

Normal shared memory programming
techniques can be used

Easily scalable, compared to traditional bus-
connected shared memory multiprocessors
Message passing is hidden from the user
Can handle complex and large data bases
without replication or sending the data to
processes

Disadvantages of DMS

* Lower performance than true shared memory
multiprocessor systems

* Must provide for protection against

simultaneous access to shared data

— Locks, etc.

Little programmer control over actual

messages being generated

* Incur performance penalties when compared
to message passing routines on a cluster

Follow-on work

Many DSM systems

— Munin

— Midway

— Blizzard/Typhoon (UW)

Page Based DSM System

Memory l H | | ] [ ‘

;J Page
Virtual memory fault
page table
Processors

Issues in DSM

Granularity
—  Whatis unit of coherence?

Consistency
~ When s the value of a write visible?

+ Immediately

*  After alock is released

+ Afteralock s released & acquired
Location
— How is data found?

Directory

+ Home nodes
Protocol
~ How do you keep the number of messages low
Implementation
~ Virtual memory - page faults
~ Binary instrumentation ~ edit instructions to perform access checks

Coherence methods

* Basic protocol: invalidation

— Make sure only one copy of a piece of data is writable
by taking “ownership” before writing

* Other option: update
— Make changes locally and then send to other nodes
— Benefit: avoids misses to fetch data after invalidation
* Challenge: when are the updates then visible to
others?
— Immediately: broadcast new data
— Release: when lock released




3/31/11

Page ownership

* Locating owners:
— Centralized: single node tracks owner of all pages
— Distributed: ownership of different pages is
tracked by different nodes
* Fixed: mapping of addresses to directory is fixed

* Dynamic: mapping of addresses to a directory is
dynamic

TreadMarks approach

* User-mode only software

— No kernel modifications

Byte/word granularity

— No dependence on language-level objects (e.g.
structs, arrays)

* Uses VM hardware to detect reference to

shared data
* mprotect() pages to invalid, read-only, or read/write

Munin Implementation (l)

* Three kinds of variables:
1. Ordinary variables: can only be accessed by the
process that created them
2. Shared data variables: should always be
accessed from within critical regions
3. Synchronization variables
. locks, barriers or condition variables
. must be accessed through special library
procedures .

Munin Implementation (Il)

* When a processor modifies shared data inside
a critical region, all update messages are
buffered and delayed until the processor
leaves the critical region

* Processes accessing shared data variables
outside critical regions do it at their own risks
— Same as with shared memory model
— Risk is higher

Basic

* Allocate shared memory using Tmk_malloc

* On access, check if local page is valid

— If not, contact remote machines to get page or
diffs to apply to local page to make it valid

Consistency in Treadmarks

* Consider two threads accessing shared data
— Thread 1: lock(m); write(x); unlock(m)
— Thread 2: does it need locks?
* Answer: for correct synchronization, it does
— Thread 2: lock(m); read(x); unlock(m)
— Thread 3: read(local-z)
* When does the write to x need to be visible?
— Immediately?
— When lock m is released?
— When lock m is acquired?
* To whom is the write to x visible
— Everybody?
— Thread 1? Thread 2? Thread 3?




3/31/11

Lazy release consistency

* Observation: correctly synchronized programs

don’t have data races

— All access to shared state are ordered with
Lamport’s happens-before and synchronization
instructions

* Locks, barriers

— Two conflicting accesses to a variable by different
threads must have a sync operation between the
to specify the order

* Conflicts = 2 accesses, one is a write

Is LR-C a good idea

* s it important to support buggy programs?

— The alternative approaches (sequential
consistency) were many times slower

LR-C

* Updates are only “Tracked” while holding a
lock
— assumes no shared data written without lock

* Updates made while holding one lock are
propagated to the next holder of the lock
— Not known until lock acquired, so ...

* Updates are propagated from releaser to
acquirer of a lock and acquire time

Eager Vs. Lazy RC

p1 acq w(x) rel

/
P2 \ I"}‘ w(x) rel Eager
P3 \ \ Zc\c'q r(x)
p1 acq w(x) rel
P2 Zcq w(x) rel Lazy
A Zc\q r(x)

Example

* Thread 1: lock(m); write(x); unlock(m);

* Thread 2: lock(m); read (x); unlock(m);
— Thread 1 remembers the x was written
* Invalidates X on other processors
— When thread 2 acquires m, it must contact thread
1 to get the lock. It goes back to thread 1 to get
any pages invalidated

Problems with LR-C

* Publication
— Write an object privately
— Acquire lock
— Add to list
— Release lock
* In LR-C, writes to object occur without lock,
are never propagated




3/31/11

Multiple Writers

* What if two language-objects reside on the
same page?
— If page-based coherence, have false sharing:
« access to one will invalidate access to the other
* pages ping-pong back and forth between processors

WRITE-SHARED PROTOCOL (l)

Designed to fight false sharing

Uses a copy-on-write mechanism

Whenever a process is granted access to
write-shared data, the page containing these
data is marked copy-on-write

First attempt to modify the contents of the
page will result in the creation of a copy of
the page modified (the twin).

Example
Before
First write access
—_—
twin
After

Compare with twin
— > Newvalue of xis 3

WRITE-SHARED PROTOCOL (l1)

At release time, the DSM will perform a word
by word comparison of the page and its twin,
store the diff in the space used by the twin
page and notify all processors having a copy of
the shared data of the update

A runtime switch can be set to check for
conflicting updates to write-shared data.

Treadmarks solution

* Assume program is correctly synchronized
— 2 threads holding different locks will not update
the same range of bytes
* Track byte-level modification to pages

— On write, create a twin page. On release, diff
original page and twin to create a list of bytes that
changed

— On fault of invalid page, get diffs from all nodes
that wrote to it

Twinning

Write(x)
Create twin

Release:

. Encode
Changes
Twin:

N Dift
L.} oift
x: If replicated,
write protect




3/31/11

Multiple-writers example

* int x,y; // on same page

Thread 1: lock(m1); write(x); unlock(m1);
— Invalidates other copies

Thread 2: lock(m2); write(y); unlock(m?2);
— concurrent; QUESTION: How get a page here?

— non-blocking: copies page from thread 1
Thread 3: lock(m1); read(x); unlock(m1);
— Gets diffs from thread 1, thread 2

Persistent Challenges

Hot pages cause a lot of coherence traffic

— NOTE: Same is true within a machine

— QUESTION: what can be done?

* ANSWER: rewrite application (data partitioning)

Fine-grained vs coarse grained

— Fine grained may work on reliable, fast network (e.g. TM CM-5)
— Coarse grained only possibility for workstations

Fault tolerance

— People have combined with STM
SMP nodes

— only a load-balance problem, but system still works (as it
operates on VM)

Kai Li’s take on DSM

* As a product/feature, it went nowhere
— Hard to reason about failure

— Works best for coarse-grained programs, which
aren’t that hard to write in other ways

— Overheads are pretty high
* As a test bed, it was useful

— Developed novel consistency semantics (lazy
release consistency)

— scalable coherence protocols

Willy Zaenepoel’s Take

DSM and P2P (and probably TM) are cousins

— High implementation complexity leads to lots of
papers

— Research drove towards fine-grained DSM (see
Shasta), but fine-grained inherently performs
poorly on a cluster

* More problems with fine grained, so more solutions
and more papers

Reality: DSM only works for coarse grained
data, large chunks of contiguous data

Willy on P2P

* Decentralized is harder/more complex than centralized

— P2P tries to make this a feature, yet few real applications
demand true decentralization except illegality

— But this yields more research papers
* P2P problems
— Hard to find data (Chord)
— Hard to secure (Sybil attack, no root of trust)
— Hard to write programs
— These all lead to more papers
* Real benefits of P2P: content distribution
— Solved by BitTorrent, not P2P research
* P2P has low impact
— What are the natural uses of decentralized systems?




