Paxos, Agreement, Consensus

3/22/11

Core problem

Want multiple nodes to agree on something

— example: change the primary site for replication
to a new node

* Challenge:

— Make it fault tolerant
* Approaches

— 2-phase commit

— (3-phase commit)

2 phase commit

* Developed for distributed databases
* Model:
— Resource managers (RM) manage individual
resources on different nodes

— Transaction coordinator (TC) centrally coordinates
operations that span multiple nodes

— Operations (replicated or different) are sent to
nodes in a transaction

* would like to have atomicity: either everybody commits
transaction, or nobody

— Paxos
2PC diagram
coordinator participant
CanCommit?
L. Prepared to commit
(waiting for votes)
2. Prepared to commit
/12/// (uncettain)
3. Committed

DoCommit
(e aborted) \
W 4. Commit
5. Done

2PC Protocol: Phase 1

* TCsends out “prepare” message to all RMs
* RMs save enough state that they are guaranteed
to be able to prepare if necessary

— Any transient changes must be written to stable
storage

— Often done with a log
* RMs must still be able to abort
— Don’t erase old data yet

— Don’t know whether all other RMs will vote to commit

2PC protocol: phase 1.5

* RMs log the prepare message and the vote
* RMs send back a vote
— “Commit” — RM is prepared to commit

— “Abort” — RM is not able to commit and wants
everyone else to abort

* Phase 2: TC sends out “Commit” or “abort”
— Log result first at TC
— RMs do the appropriate thing




Failure in 2PC

* RM failure

— It it fails before/during prepare, TX is aborted (need
unanimity)

— If it fails after prepare, wakes up knowing it was
prepared and can ask TC for outcome: THIS BLOCKS

* RMs don’t communicate, so cannot ask each other what
happened

* TC failure:
— Before logging outcome, abort

— TC aborts TX in prepared stage, resends outcome for
Commit/abort

3/22/11

2PC vs. Replication

* 2PC works well if different nodes play different roles
(e.g., Bank A, Bank B)
e 2PCisn’t perfect
— Must wait for all sites and TC to be up
— Must know if each site voted yes or no
— TC must be up to decide
— Doesn’t tolerate faults well; must wait for repair
* Can clients make progress when some nodes
unreachable?
— Yes! When data replicated.

Can we fix 2PC

* Yes: 3-phase commit
— Add another stage (pre-prepare)
— Allow electing a new coordinator if it fails
* No: 3pc protocols don’t handle partition

— two coordinators may be elected on different
sides of the network

* No
— Known 3pc protocols have flaws

Paxos

* Developed indepdendently by Leslie Lamport and
Barbara Liskov (View Stamped Replication)
— Widely seen as the only solution to this problem
— Widely used in real systems — Google, Microsoft

e Written in 1990, but lost & not published until
1998

* Solves consensus in asynchronous system

— Never makes the wrong choice, but may not make
progress (consistency not availability)

Problem

* How to reach consensus/data consistency in
distributed system that can tolerate non-
malicious failures?

Paxos: fault tolerant agreement

* Paxos lets all nodes agree on the same value
despite node failures, network failures and
delays

* Extremely useful:

—e.g. Nodes agree that X is the primary

—e.g. Nodes agree that Y is the last operation
executed




Paxos: general approach

* One (or more) node decides to be the leader

* Leader proposes a value and solicits
acceptance from others

* Leader announces result or try again

3/22/11

Paxos requirement

* Correctness (safety):
— All nodes agree on the same value
— The agreed value X has been proposed by
some node
* Fault-tolerance:
— If less than N/2 nodes fail, the remaining nodes
should reach agreement eventually w.h.p

— Liveness is not guaranteed if there are a steady
stream of failures

Why is agreement hard?

What if >1 nodes become leaders simultaneously?
What if there is a network partition?
What if a leader crashes in the middle of solicitation?

What if a leader crashes after deciding but before
announcing results?

What if the new leader proposes different values than
already decided value?

Paxos setup

* Each node runs as a proposer, acceptor and
learner

* Proposer (leader) proposes a value and solicits
acceptance from acceptors

* Leader announces the chosen value to learners

— Roles are transient (can be reassigned or float
around), just someone has to do it in the protocol

— Acceptor generally is the set of nodes that want to
agree

Strawman 1: single acceptor

* Designate a single node X as acceptor (e.g. one with

smallest id)

— Each proposer sends its value to X

— X decides on one of the values

— X announces its decision to all learners

e Problem?

— Failure of the single acceptor halts decision
— Need multiple acceptors!

Strawman 2: multiple acceptors

Each proposer (leader) propose to all acceptors

Each acceptor accepts the first proposal it receives and rejects
the rest

If the leader receives positive replies from a majority of
acceptors, it chooses its own value

— There is at most 1 majority, hence only a single value is chosen
Leader sends chosen value to all learners

Problem:

— What if multiple leaders propose simultaneously so there is no majority
accepting? (not live!)




Paxos solution

* Proposals are ordered by proposal #

— a node can choose an arbitrarily high number to
try to have their proposal accepted ...

* Each acceptor may accept multiple proposals

— If a proposal with value v is chosen, all higher
proposals have value v

— Ensures that proposed values converge

3/22/11

Paxos operation: node state

* Each node maintains:

— na, Va: highest proposal # and its corresponding
accepted value

— nh: highest proposal # seen
— myn: my proposal # in current Paxos

Paxos algorithm

* Phase 1 (prepare):

— A proposer selects a proposal number n and sends a
prepare request with number n to majority of acceptors.

— If an acceptor receives a prepare request with number n
greater than that of any prepare request it saw, it
responses YES to that request with a promise not to
accept any more proposals numbered less than n and
include the highest-numbered proposal (if any) that it has
accepted.

Paxos operation: 3P protocol

* Phase 1 (Prepare)
— A node decides to be leader (and propose)
— Leader choose myn > nh
— Leader sends <prepare, myn>to all nodes
— Upon receiving <prepare, n>
If n<nh

Already seen a higher-
reply <prepare-reject> numbered proposal
Else

nh=n

reply <prepare-ok, na,va> This node will not accept
any proposal lower than n
Send back previous

number, value

Paxos algorithm

* Phase 2 (accept):

— If the proposer receives a response YES to its prepare
requests from a majority of acceptors, then it sends an
accept request to each of those acceptors for a proposal
numbered n with a values v which is the value of the
highest-numbered proposal among the responses.

— If an acceptor receives an accept request for a proposal
numbered n, it accepts the proposal unless it has already
responded to a prepare request having a number greater
thann.

Paxos operation

* Phase 2 (Accept):
— If leader gets prepare-ok from a majority
V = non-empty value corresponding to the highest nareceived
If V= null, then leader can pick any V
Send <accept, myn, V> to all nodes
— If leader fails to get majority prepare-ok Reuse most recent chosen
+ Delay and restart Paxos value (ensures convergence)
— Upon receiving <accept, n, V>
Ifn<nh
reply with <accept-reject>
else
na=n;va=V;nh=n
reply with <accept-ok>




3/22/11

Paxos operation

* Phase 3 (Decide)
— If leader gets accept-ok from a majority
* Send <decide, va> to all nodes (LEARNING)
— If leader fails to get accept-ok from a majority
* Delay and restart Paxos

Paxos’s properties

* P1: Any proposal number is unique.

* P2: Any two set of acceptors have at least one
acceptor in common.

* P3: the value sent out in phase 2 is the value
of the highest-numbered proposal of all the
responses in phase 1.

Learning a chosen value

* There are some options:
— Each acceptor, whenever it accepts a proposal,
informs all the learners.
— Acceptors informs a distinguished learner (usually
the proposer) and let the distinguished learner
broadcast the result.

Paxos operation: an example

nh=N0:0 nh=N1:0 nh=N2:0
na = va = null na =va = null na =va=null
Prepare,N1:1 Prepare,N1:1
nh= N1:1 \ nh: N1:1
na=
na = null P~ ok, na na = null
va = null =vaz va = null
Accept,N1:1,val t N1:1vall
nh=N1:1 %g\ nh=N1:1
na=N1:1 \a\ na=N1:1
va=vall k K va =vall

NO N1 N2

Reading the result of an agreement

* Without designated learners/decide message:
— Must run Paxos to learn what all nodes agreed
— Otherwise cannot learn that a majority agreed

* With designated learner:
— it gets notified of every decision

* Leases: allow fault-tolerant learners

— promise a single learner for a while (with timeout),
must be renewed or else a new learner will be found

— Avoids paxos for learning

Paxos properties

* When is the value V chosen?
1. When leader receives a majority prepare-ok and
proposes V
2. When a majerfty nodes aceept V

3. When the leader receives a majority accept-ok
for value V




Definition of chosen

* Avalue is chosen at proposal number n iff
majority of acceptor accept that value in
phase 2 (accept message) of the proposal
number.

3/22/11

What About Omissions?

* Does not block in case of a lost message

— Phase | can start with new proposal even if
previous attempts never ended

Understanding Paxos

* What happens if the network is partitioned?

— With one partition, will have a majority on one
side, can come to agreement (if nobody else fails)

Paxos: Timeouts

* All nodes wait a maximum period (timeout)
for messages they expect

* Upon timeout, a node declares itself a leader
and initiates a new Phase 1 of algorithm

Paxos: Ensuring Agreement

* When would non-agreement occur?
— When nodes with different v, receive Decide
» Safety goal:

— If Accept could have been sent, future Decide’s
guaranteed to reach nodes with same v,

Risk: More Than One Leader

* Can occur after timeout during Paxos
algorithm, partition, lost packets

* Two leaders must use different n in their
Prepare()s, by construction of n

* Suppose two leaders proposed n=10and n =
11




More Than One Leader (2)

* Case 1: proposer of 10 didn’t receive Accept-
ok()s from majority of participants
— Proposer never will receive accept-ok()s from
majority, as no node will send accept-ok() for
prepare(10,...) after seeing prepare(11,...)

— Or proposer of 10 may be in network partition
with minority of nodes

Result: 10’s proposed not decided!

3/22/11

More than One Leader (3)

Case 2: proposer of 10 (10) did receive accept-ok()s
from majority of participants
— Thus, 10’s originator may have sent decide()!

— But 10’s majority must have seen 10’s accept() before 11’s
prepare()

* Otherwise, would have ignored 10’s accept, and no majority could
have resulted

— Thus, 11 must receive prepare from at least one node that
saw 10’s accept

— Thus, 11 must be aware of 10’s value
— Thus, 11 would have used 10’s value, rather than creating
one!

Result: agreement on 10’s proposed value!

Risk: Leader Fails
Before Sending accept()s

* Some node will time out and become a leader

* Old leader didn’t send any decide()s, so no risk
of non-agreement caused by old leader

* Good, but not required, that new leader
chooses higher n for proposal
— Otherwise, timeout, some other leader will try

— Eventually, will find leader who knew old n and
will use higher n

Risks: Leader Failures

* Suppose leader fails after sending minority of
accept()s

— Same as two leaders!

* Suppose leader fails after sending majority of
accept()s

—i.e., potentially after reaching agreement!
— Also same as two leaders!

Risk: Node Fails After Receiving accept(), and
After Sending accept-ok()

If node doesn’t restart, possible timeout in
Phase 3, new leader

If node does restart, it must remember v, and
n, on disk!

— Leader might have failed after sending a few Q3()s
— New leader must choose same value

— This failed node may be only node in intersection
of two majorities!

Paxos and BFT

* The BFT protocol really is a byzantine version
of Paxos

— Signed messages

— 2F+1 responses needed to make progress rather
than a simple majority




Variants

* Multi-paxos

— Once a leader has an established ballot number, it

can pass multiple steps without sending out a new
prepare

« It already has a good idea what the other nodes ballot/
proposal numbers are and what they will accept

— just send “accept” and “decide” (like two-phase
commit) with the correct numbers

* Change memberships
— pass it in one ballot and use it later

3/22/11

Checkpoint+log recovery

* How does a dead node come up to speed?
— Copy state from another node + replay log
— Need to snapshot state periodically

* Complication: must synchronize snapshot
(slow operation) with log, so set is consistent
— Think copy-on-write

Real-world problems

* Disk corruption on failure recovery
— Must checksum log

* Simplifying reads: master leases
— Ensure no one else will try to propose

— Replicas refuse prepare messages from anyone
but master

— Flip-flop from repeated master failover
— Upgrades between protocol versions




