Dynamo

Notes from reviews

* Evaluation doesn’t cover all design goals (e.g.
incremental scalability, heterogeneity)

* Isit research?
* Complexity?
* How general?

Dynamo: Motivation

» Largest e-commerce site
75K query/sec (my estimation)
500 req/sec * 150 querylreq
O10M) v nd ry s amazoncom
» Why not RDBMS?
Not easy to scaling-out or load balancing
Many components only need primary key access

» Databases are required just for Amazon
Dynamo for primary key accesses
SimpleDB for complex queries
53 for large files

» Dynamo is used for

Shopping carts, customer preferences, session management, sales rank,and
product catalogs

Dynamo Motivation

* Normal database not the right fit for some

applications
— Strict consistency too expensive, doesn’t tolerate
all the right failures

— Applications may be able to use internal
knowledge to handle certain inconsistencies

— Expensive to purchase, to scale to the needed size

Evaluating Commercial Products

There is a temptation to say “it is really used,

it must be good”

— Not always the case — there can still be bad design
decisions

— But generally shows the different motivations,
considerations of industry

— Example: bigtable from google vs DB
* DB can be 10x faster in some cases

Dynamo: A Database?

This is basically a database

But not your conventional database
Conventional (relational) database:

— Data organized in tables

— Primary and secondary keys

— Tables sorted by primary/secondary keys
— Designed to answer any imaginable query
— Does not scale to thousands of nodes

— Difficult to replicate
Amazon’s Dynamo

— Access by primary key only

3/3/11

Dynamo: Features

» Key, value store
Distributed hash table
» High scalability
No master, peer-to-peer
Large scale cluster, maybe O(1K)
» Fault tolerant
Even if an entire data center fails
Meets latency requirements in the case

ACID Properties

* Atomicity — yes
— Updates are atomic by definition
— There are no transactions
* Consistency — no
— Data is eventually consistent
— Loose consistency is tolerated
— Reconciliation is performed by the client
— Database consistency: yes (because only single-value updates)
* Isolation
— yes isolation — one update at a time
* Durability — yes
— Durability is provided via replication

High Availability

Good service time is key for Amazon

Not good when a credit card transaction times
out

Service-level agreement: the client’s response
must be answered within 300ms

Must provide this service for 99.9% of
transactions at the load of 500 requests/second.

— Requires optimistic protocols that can return
asynchronously

The Cost of Respecting the SLA

* Loose consistency
— Synchronous replica reconciliation during the request cannot be done
— We contact a few replicas, if some do not reply, request is considered
failed
* When to resolve conflicting updates? During reads or during
writes?
— Usually resolved during writes
— Dynamo resolves it during reads
— Motivation: must have an always writable data store (can’t lose
customer shopping card data)
* QUESTION: what happens under absurd failures? e.g. multiple data
centers fail?
— Cannot handle all possible failures; it is a probability game

Consistency Models

Server-side:

— Concerns consistency of data on disks, values that could be returned
to clients

— Depends on quorum protocols & majorities
Client side: many versions
— Strong: read previous write
— Weak: no guarantees
— Eventual: if wait long enough without failures, get most recent value
— Causal: if A tells B it updated data x, B will see updated version
* lsis
— Read-your-writes: if A writes value x and then reads it, guaranteed to
see its write
— Session: read-your-writes within a “session” that can end
— Monotonic read consistency: reads only get newer in versions

System Interface

+ get(key)
— Locate object replicas
— Return:
* Asingle object
+ Alist of objects with conflicting versions
+ Context (opaque information about object versioning)
« put (key, value, context)
— Determines where the replicas should be placed
— Writes them to disk
— Context helps write things back to same place, help with versioning of data

» Requirements for clients
Don'’t need to know ALL nodes, unlike memcache clients
Requests can be sent to any node

3/3/11

Design Consideration

* What are design goals?
— Sacrifice strong consistency for availability if needed
— Conflict resolution is executed during read instead of
write, i.e. “always writeable”.
— Other principles:
* Incremental scalability.
¢ Symmetry.
« Decentralization.
* Heterogeneity.

Partition Algorithm
/Ke}K

Consistent hashing: the output 6/@\ <

range of a hash function is treated as a /
. P / { " NodesB.C
fixed circular space or “ring”. !

1 and D store
”VA ”, 1;e§sj\nn
. irtual Nodes”: Each node can be range (AB)

including

responsible for more than one virtual

s
node. \\®;»/@/ .

— WHY?
Virtual Nodes

» Virtual nodes 27128
Multiple positions are taken hash(node3-1) 9 1 2
by a single physical node hash(node5) I3

O(100) virtual/physical
hash(noded)
hash(nodel-1) hash(nodeS-1)

» Advantages hash(node2-1)
Keys are more uniformly hash(nodeé-1)
distributed statisticall

ly hash(node2) r hash(nodeé) _
Remapped keys are evenly h“h(nodeg)-

dispersed across nodes

of virtual nodes can be

determined based on hash(node5-1) r hash(nodel)
capacity of physical node

Two virtual nodes per each physical node

How to use consistent hashing

Try 1: randomly assign nodes numbers (tokens), keys hashing
between tokens assigned to next token
— Problem: finding all keys in a region requires scan (no DB index!)
— Adding more nodes forces repartitioning of data (a range gets split)
— Hard to snapshot key space
Try 2: fixed size buckets, random token numbers, buckets assigned
to next token
— not evenly assigned
Try 3: Each bucket explicitly assigned to a node, node remembers
list of buckets

— More control over what buckets it steals, where buckets go (no longer
rely on hash + numbers)

— Can store each bucket in a separate file/db
— Must store mapping

in data center B

Dynamo: Partitioning

» Physical placement of 28128
replicas [
Each key is replicated hash(node5)
across multiple data centers -
> hash(noded)
Arrangement scheme has
not been revealed
Netmask is helpful, | guess
Impact on replica distribution
is unknown hash(node2) —t hash(nodeé)
nasn(node3) (il
joe
» Advantages hash(cart/joe) r
No data outage on data ' hash(nodel)

center failures

Replication

* Each data item is replicated
at next N hosts. / KeyK

* “preference list”: The list of /@\
”/@ Nodes B. C

nodes that is responsible for
{
i i | andDsu
storing a particular key. @ @ g Dt
range (A.B)

T including
. /
JONNOS

— The next N+slop nodes after
key (slop for availability)

— Virtual nodes are skipped to
ensure that replicas are located
on different physical nodes

3/3/11

Replication

* Each access has a coordinator

* The coordinator hashes the node at N other
replicas
— Anyone can coordinate a read

— Writes must be done at any of top N nodes so it
can assign a timestamp

N replicas that are next to the coordinator
node in the ring in the clockwise fashion

Dynamo : Request >
get/ put Operations Response

» Client Client

Sends a request any of)
Dynamo node Ny
The request is forwarded to Coordinator -
coordinator ; s
" » joe
Coordinator: one of nodes J
associated with the key

» Coordinator

Chooses N nodes by using ‘
consistent hashing . |
joe

Forwards a request to N ' y
nodes ! "
Waits responses from R or v,
W nodes, or timeouts c”
Checks replica versions if get
Sends a response to client

get/put operations for NRW = 3,2,2

Consistency

* Dynamo client chooses consistency level

— Chooses N (number of replicas), W (number of
writes that must complete), and R (number of
reads the at must complete)

— w+r > N leads to strong consistency

By default, replication is synchronous
—async only under failure

On read: collect results from r nodes

Data Versioning

A put() call may return to its caller before the
update has been applied at all the replicas
QUESTION: How do you handle inconsistency?

— Allow multiple versions to exist simultaneously

— Means Dynamo doesn’t need to merge versions

A get() call may return many versions of the same
object.

Challenge: an object having distinct version sub-histories, which the
system will need to reconcile in the future.

Solution: uses vector clocks in order to capture causality between
different versions of the same object.

Detecting/resolving conflicts

* Reads return causally indepdendnt versions
— If one version is just older (was overwritten), ignored
* Detect on READ when two conflicting versions
come back

— Fixed by merging in client, writing back new version
with clock > all existing versions

* Old versions detected on read when non-
conflicting versions returned
— old one is updated

Vector Clock

A vector clock is a list of (node, counter) pairs.

Every version of every object is associated
with one vector clock.

If the counters on the first object’s clock are
less-than-or-equal to all of the nodes in the

second clock, then the first is an ancestor of
the second and can be forgotten.

3/3/11

Vector clock example

wiite
handled by Sx

D1 ([Sx,1])
write
handled by Sx
D2 ([Sx.2])
write write
handled by Sy handled by Sz
D3 ([Sx,2],[Sy.1]) D4 ([Sx.2],[Sz,1])
reconciled
\ /and written by
Sx

D5 ([Sx,31.[Sy,1][Sz,1])

Failed nodes: Hinted handoff

What happens on
failure?

Assume N =3. When Ais »/ Kok
temporarily down or "@‘\
unreachable during a write, send @ @

replica to D. / { "\ NodesB.C
— Write to W “healthy nodes” for /® \ and D store

keys in
fault tolerance @ range (A.B)
including

* Dis hinted that the replica is X ; e

belong to A and it will deliver to
A when Ais recovered.

— Doesn't just take over for
temporarily failed node, but
remembers which data to give

acl

« Again: “always writeable”

Handling Permanent failures

* What happens when hinted replicas are
unavailable to the returning node?

— Q: key problem is getting latest data back to it

— Answer: use anti-entropy (random
synchronization with peers)

* Challenge: detect which data out of date
— Answer: Merkle trees

Replica synchronization (Cont’d)

* Structure of Merkle tree:
—a hash tree where leaves are hashes of the values
of individual keys.
— Parent nodes higher in the tree are hashes of their
respective children.

* Solves the problem of finding small differences in a
large data set

Replica synchronization (Cont’d)

* Advantage of Merkle tree:

— Each branch of the tree can be checked
independently without requiring nodes to
download the entire tree.

— Help in reducing the amount of data that needs to
be transferred while checking for inconsistencies
among replicas.

> Advanrages ot Merkle tree

Comparisons can be reduced, if most of replicas are
synchronized

Root checksums are equal, and no more comparison is required

» Sync replicas with Merkle tree
Compares Merkle tree with other nodes

From root to leaf, until checksum corresponds with each other

nodel 3377 I. Compare 5C37 node2
+ :
12D5 FIC9 2.Compare 1205 E334
K S P
8FF3 9F9D F632 34B7 3. Compare SFF3 9F9D F632 EIF3
t ot 1t N ’
win mac linux | bsd

win | mac linux ﬁ

3/3/11

Recovery Issues

* What is increased load on system when
coming back

— talk to nodes ~ number of buckets, pull some data
from each one

— low impact on those nodes

Membership

* Node add/remove handled through “gossip”
protocol
— nodes randomly communicate with each other
— Does “anti entropy”
— New node chooses tokens on ring
* At first, a node only knows its tokens

— Anti-entropy distributes this & other mappings to
everyone

Failure detection

* What do Dynamo nodes have to know about
each other?
— Do they have to know which are live/dead?
— Do they have to know which are members?
— ANSWER: only membership + map
* Local failure detection
— nodes only communicate with next/previous

nodes on ring, so can learn during regular
communication if they are alive/dead

Dynamo: Membership

» Gossip-based protocol

Spreads membership like a
rumor Detecting node failure '
Membership contains node list
and change history -
Exchanges membership with a
node at random every second

Updates membership if more 4@ node2 is down
recent one received

node2 is down

hash(node2) . node2 is down

» Advantages r

node2 is down '
Robust; no one can prevent a

rumor from spreading I
Exponentially rapid spread Membership change is spread
by the form of gossip

Summary of techniques used in Dynamo and
their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

Vector clocks with reconciliation

High Availabilty for writes Goring read

Version size is decoupled from
update rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high avallablltty and

durability guarantee when some of
the replicas are not available.

Recovering from permanent . Synchronizes divergent replicas in
S oreq Anti-entropy using Merkle trees he background

Preserves symmetry and avoids

having a centralized registry for

storing and node
liveness information.

Membership and failure detection rotocol

P pr
and failure detection.

3/3/11

