Lecture 10 — Process Groups, Causal Ordering

1. Questions from reviews
2. Overall model
a. Small scale distributed system: air traffic control
i. Radars sense where planes are, send out updates
ii. Controllers make requests, send out their commands
iii. Planes ask for commands
iv. Note that radars + planes are “outside” — the system is really the
controllers
b. QUESTION: What are goals?
i. Goalis fault tolerant computing
1. Use replication for reliability
ii. Goalis simple programming
1. Programmer relies on library/service to handle things
iii. Non goal: byzantine fault tolerance
1. Rely on failure detector to mark failed nodes as dead
c. USE:
i. Used in DCE corba for dist object-oriented systems
ii. Used in Microsoft cluster service for coordination
iii. Used by stock exchange, French air-traffic control
iv. Ultimately lost in the market to much larger scheme for database-
oriented solutions
3. History of model
a. Grew out of byzantine-fault tolerance work: the idea of replicated state
machines, atomic delivery of messages
b. Want to adapt to a practical setting — not just replicated, deterministic state
machine, but any applications
c. Want to make higher performance than atomic/total ordering
4. WHAT does the model include?
a. Failure mode: halt (fail stop)
i. Processes fail by halting
ii. A failure detector service detects failures, sends out notification
messages
b. Process groups
i. Names for groups (e.g. identifiers)
ii. Memberships change over time
1. Unlike byzantine generals...
c. Reliable Multicast (called broadcast) to a group
i. Can achieve “atomic broadcast” meaning all receive or none do
1. Just like byzantine generals

ii. Relaxed a bit: if one node receives a message then fails before sending

anything else, order can be changed at other nodes
d. Ordering model: virtual synchrony

i. ldeal situation: clocks advance in lockstep on all nodes. Reality is clock

skew, message delay, processing delays
1. Everything has a total global order

ii. Implement virtual synchrony, which has the same programming model as

synchrony

Fig. 6.1 Synchronous run. Fig. 6.2 Virtually synchronous run.
iii.
1. Difference: concurrent messages can overlap
5. Process groups
a. QUESTION: what is the point?
i. Naming: keep track of who is interested in an object
ii. Membership: handle views of who is supposed to receive messages
iii. Failure reporting: other members of a group learn of failed members
b. USES:
i. Diffusion groups: propagate information from leader to followers
ii. Client server groups: clients talk to a group of servers
iii.
c. QUESTION: How are process groups maintained?
i. GBCAST (Group broadcast) communicates membership changes
ii. QUESTION: How should these be ordered with respect to normal
application communication?
1. A:want total order (like a distributed snapshot): app messages
are either before membership change or afterwards
iii. Basic model: failure detector service runs at every node
1. When app detects possible failure (e.g. missed message), notifies
failure detector
2. Failure detector can then use GBCAST to make failure visible to all
d. Protocol for updating view:
i. Send “view extension message”
1. Onreceipt, if no prior concurrent view extension, than ACK
2. Else NACK, providing nodes from other view extension
ii. On receipt of ACKs
1. Send out commit making new view real
iii. On receipt of a NACK, update extension and retry from beginning
iv. If there are partial views from a failed extension

1. If new primary has them, include failure of prior manager,
includes in view (to prevent NACK)

2. If has committed prior extension, some nodes may not have
committed —includes in next view.

e. QUESTION: How use process groups

Keep track of coordination information (e.g. GFS masters in Google File
System)
Different terminals used by different air traffic controllers

6. Multicast Primitives
a. Key idea: virtual synchrony

iv.

In real synchrony, can only send one message at a time (to get total order
everywhere)
In virtual synchrony, can have concurrent independent operation, but
ensure delivery is in correct order at the end

1. Buffer messages at recipient until can be delivered in right order
SO: separate reception (message arrives) from delivery (give to
application)

b. GBCAST totally ordered with respect to other communication

iv.

Messages from a failed process must be delivered before GBCAST of its
failure

GBCASTS and other broadcasts with overlapping destinations must have
same order

NOTE: this ordering requirement (ordered with everything) could be very
expensive!

IMPLEMENTATION: deferred

(o ABCAST atomic broadcast

V.

Specify a destination label (scope of ordering) so you can have
independent atomic broadcasts going on
1. Want most flexibility possible in ordering
All ABCAST delivered to all destinations or none (Atomic)
1. If delivered to one node & sender fails, receiver can resend
All ABCAST to same label are received in same order at all destinations
Prototype implementation: two phase delivery (like Lamport)
1. Send msg to all receipiend
2. Recipients mark undelivered, send back a priority (e.g. like a
lamprt clock)
3. Sender collects all acks, picks max priority and sends it back
4. Receiver resorts queue, marks message deliverable and delivers
message at head of queue
5. NOTE: single queue undelivered and deliverable messages
6. SHOW EXAMPLE
7. NOTE: can have a separately delivery queue for each label
Reliability:

1. If a node has an undelivered message and detects failure of
sender, will resend as the new leader (guarantees eventual
delivery if any recipient received it).

d. CBCAST: causal broadcast
i. Specify set of destinations. (process group)
ii. Ordering:

1. Ensures happens-before delivery: if message sent by A to B and C,
then B sends a message to C, then C receives message from A
before message from B

2. Uses “clabel” to express causality, like Vector or Lamport clocks

3. QUESTION: Why?

a. Suppose you have a file
i. Process A multicasts “create file F”
ii. Process B multicasts “append to file F”
b. Causality ensures that all members get process A message
before process B

Theoretic Option User
Pricing Pricing Monitor
Option price 25.5
Theoretical price 26.75.wmwweweeend ,\
Option price 26
Theoretical price 26.25...........c.s
Optlon pnce 26.50
Theoretical price 27. 0 weereeeeeesd
f
4, ¢

5. Notice: does not ensure total order (P1 sees broadcast in 4 and 5
an order different from P2 and P3)
6. Example: doesn’t provide total order,
7. VISION: FIFO channels in point-to-point are helpful (e.g. tcp/ip)
a. Ensure things come in the right order
i. Buffer things that arrive out of order, resend if
missed
b. Want same property for multicast, but want most useful
relaxed order (for performance)
iii. Atomic delivery: to all or none of destination
iv. Implementation (prototype — not real one used)

1. Have a queue of messages received, messages to be sent (in
order) - BUF
2. Messages have full list of recipients on them
3. Tosend a message:
a. Add to BUF, remove self (p) from destinations, deliver
locally
4. When sending a message B,
a. Create a transfer packet of all messages B’ that happen
before B and have remote destinations, sorted causally
b. Send transfer packet to destination
c. Send message B to destination
5. Onreceiving packet with messages B’ and B at process q
a. If any message B already delivered, than drop (as
duplicate)
b. If g is a destination (not just forwarding), then remove q
from remaining destinations and deliver in order.
6. BASIC idea: when send a message that depends on a prior one to
the same destination, include it.
v. REAL IMPLEMENTATION:
1. Include vector clock on all broadcasts to a process group
2. Delay delivery if message arrived out of order:
a. Vector[sender] != vector[previous message from sender]
+1
b. Vector [anyone else] != vector[anyone else in last
message]
e. GBCAST implementation:
i. Requirement: must be totally ordered with respect to failures, ABCAST,
GBCAST
ii. Failure:
1. For failure of node F, Send message to everyone, ask them
complete deliver of messages from F
a. For CBCAST: Schedule delivery of messages from f
b. For ABCAST: wait until all message from F become
deliverable
iii. Order W.R.T. ABCAST
1. Treat it like an ABCAST across all labels — deliver when becomes
the next message for all labels.
iv. Order W.R.T CBCAST
1. Treat like snapshot algorithm: make a queue of messages, and
order them as before or after the GBCAST
a. GBCAST sender P ask all recipients for a list of current
pending messages
i. Each recipient creates wait queue for messages
instead of delivering them

2.

3

4,

ii. Send all messages in BUF to remaining destinations
— so sent before failure
iii. Send a list IDLIST of all messages that have been
delivered to P
b. P sends list of all messages received before GBCAST to all
recipients as “before gbcast” messages
i. Received should have received it during forwarding
step ii above and placed it on wait queue
ii. Can now deliver these
Now deliver all before- messages on wait queue
Then GBCAST
Then re-allow ABCASTS

v. Simpler implementation of ABCAST

1.

2.

3.

Observation: CBCAST and ABCAST act the same if there is a single
sender at a time

a. Grab alock using CBCAST
Use CBCAST to deliver message

a. No need to wait for replies from everyone

b. Can overlap
Sends ordered by lock, so maintain total order needed by ABCAST

f. Use of broadcast:
i. ABCAST,GBCAST: tend to be synchronous to do things like to do an RPC

that updates common state

7. Objections

1.

Use it for performing totally ordered writes

ii. CBCAST: tends to by async: fire & forget

1.

w

E.g. read an object by “registering” a read lock with CBCAST and
reading a local copy

Can then read local copy & drop lock

Is totally ordered before or after other ABCASTS

Can use for a lock:
a. Broadcast to acquire lock, holder replies to oldest

broadcast

b. Causality ensures lock arrives after any messages
preceding lock release

c. Same idea as Lamport lock, but use causal broadcast
instead of atomic

a. David Cheriton and Dale Skeen had a paper in SOSP’1993 saying causally &
totally ordered communication is not very helpful:

i. Fundamental problem: causality is around communications, but doesn’t
respect real ordering of program (e.g. database serializability), doesn’t
handle stable updates to persistent data

1. Their view: you have durable data and separate processes

operating it (like a database)

2. Want consistent updates to stored data
3. CATOCS doesn’t really do this.
ii. Does not recognize causality outside the system (e.g. between
sensors/actuators in real world.)
1. Example: fire detected (broadcast), fire out (broadcast in
response). Second fire detected (broadcast) could overlap — does
not preserve causality when events are causally ordered

externally
Proc. Proc. Proc.
P Q R

first “fire” message sent

“fire out” message sent

\/

second ‘“fire” message sent

last msg received—fire out”

A 4 v

2.
3. Problem: causality of second fire starting after first not respected

iii. Cannot group updates like a transaction
1. Suppose updating multiple objects — need to acquire a lock (like
lamport clock paper)
iv. Cannot expose semantic orderings outside of messages
1. E.g.stock pricing: exposes causal order, but if that isn’t the right
order (e.g. A sends to B and C, B sends to C, A sends to C after B in
stock pricing), then not enough
v. Inefficient
1. May need to buffer messages before delivery (e.g. ABCAST,
CBCAST)
b. Responses from Birman
i. Focus on apps without durable state — they work well with a database—
and more on command/control with short-term transient state
1. E.g. whois the leader now, who is holding locks right now
2. Tend not to have multi-object updates as in a database
3. Database apps interact indirectly through shared objects
a. E.g.write/read file in file system, update/query data
4. Control apps interact directly
a. Send message to processes telling them what to do.
ii. Most causality actually captured by communication

Can do transactions with a CBCAST locks: get lock, then CBCAST updates
asynchronously
Inefficient: can condense down to a vector clock per message, not very
big.
1. Any kind of ordered delivery requires some buffering plus clocks
2. E.g. windows for TCP/IP
3. Question: can cost be small, can benefit outweigh cost?

