
Machine-independent virtual memory

1. Big ideas
a. Abstract low-level details of privileged architecture in

implementation
i. More variation in virtual memory than CPU scheduling
ii. Closer ties to whole OS than devices (via device drivers)

b. Solution: clever data structures
i. Make copy-on-write efficient
ii. Treat hardware structures as a cache of real data –

“soft state” can be discarded & regenerated
2. Goals

a. Multiprocessor
b. Unix compatibility

i. One of first OS designed to be compatible with another
one!

c. Message based (not procedure oriented)
d. Multiprocessor – capable
e. Network – capable

3. Mach overview
a. Mach abstractions

i. Task = execution environment / address space / unit
of resource allocation

ii. Thread = unit of CPU utilization
iii. Port == communication channel, a queue for

messages protected by capabilities
1. Are basically capabilities you invoke by sending a

message instead of dereferencing
2. Q: How do you get a port? From a name server or

from your parent
3. NOTE: like Mach

iv. Message = typed collection of data, may contain ports
v. Memory object = collection of data provided for and

managed by a server that can be mapped into an
address space

b. Operations on objects
i. For everything but messages, implemented by

sending/receiving messages
ii. Indirection of messages allows a network to be

interposed, either an SMP or a cluster / distributed
system

iii. Integrated VM and IPC reduces performance overhead
of IPC compared to shared memory ; need not copy

4. Memory goals
a. Flexible use of VM capabilities

i. Software shared memory: multiprocessor over the
network

ii. Use of pages for guard pages (unmapped) for garbage
collection or allocation

iii. Could do compression instead of swapping easily
b. Machine independent:

i. Different CPUs have different VM design:
1. X86: hardware radix tree read by CPU
2. MIPS: software filled TLB
3. RT (power): inverted page table (big hash table)

read by CPU
4. SPARC: few Segments, TSB, software TLB
5. VAX: virtual page table: linear mapping of pages

in virtual address space, can selectively map to
physical pages to get sparseness

ii. How handle portability in an OS?
1. Linux / Unix / Windows approach: pick one

architecture as the OS implementation, emulate
on others

a. Linux, Windows: x86
b. Unix: Vax

2. Why is this bad?
a. Don’t get to use the features of other

systems
i. E.g. multiple page sizes

b. Extra overhead for multiple data structures
after emulation

i. Put mappings in two places
3. Goal: provide an abstraction not of virtual

memory, but of virtual memory hardware
a. What is it: a software TLB (the pmap)

5. Implementation of mach memory
a. Separate into two problems:

i. Machine dependent: what the HW requires
1. When used?

a. Only for operations the HW must know
about: manipulating translations within an
address space

ii. Machine independent: efficient structures for OS-level
operations, not tied to HW

1. Memory-mapped files
2. Copy-on-write
3. User-level paging (more on this)
4. Fine-grained protection changes at user level

iii. A bit like ExoKernel, but some abstraction

6. Machine-independent data structures
a. Abstract address space:

i. address maps: sorted linked lists of map entries, each
describing a region, per task: protection + inheritance.

ii. Used for PF lookups, copy/prot operations,
allocation/deallocation of address ranges

b. Memory objects:
i. units of backing storage:

c. Memory regions (stack, heap, memory-mapped file)
i. specifies resident pages (those in DRAM) + where to

find non-resident pages.
ii. Non-resident pages can be stored outside kernel

d. Copy-on-write:
i. Shadow objects shadow a memory object and contain

COW pages
ii. Show example:

1. Have base memory object
2. When CoW, create shadow object that points at

base object
a. Addres Map points at shadow object
b. Shadow object only has pages not in base

object
3. On CoW, allocate new shadow object, points to

next shadow object
iii. share maps for explicitly shared memory (not COW) ==

layer of indirection for an address map
1. Address map points at share map
2. Share map points to underlying memory objects
3. Adds an indirection as don’t have to manipulate

underlying objects, e.g. when forking() and
coping the whole address space

e. Physical memory:
i. Treated as a cache of parts of memory objects
ii. resident page table: current attribute for all physical

pages
iii. Keeps track of how pager is being used: as part of an

object
iv. Also indexed by offset into object for page faults / tlb

misses
7. Machine-independent structures

a. pmaps: subset of pages visible to HW –
b. Is a coherent cache of machine-independent state.
c. can be thrown away any time for efficiency or space; can be

reconstructed.
d. QUESTION: Why?

i. Can save memory by not maintaining
ii. Can make operations more efficient by not keeping

up-to-date; just delete it
8. What happens on a page fault / TLB miss?

a. First consult pmap to see if there is already a mapping. If so,
use it

b. If not, call machine-independent code to look at address
map, to find the appropriate memory object, then in the
object/offset hash table to find corresponding physical page

c. If not in memory, deal with paging (coming up soon)
9. Operations on objects

a. Allocate / deallocate
b. Set protection / inheritance status

i. Set on memory regions, propagate to pmaps
c. Create & manage a memory object for other tasks
d. Optimizations

i. Read/write sharing and COW sharing
ii. Whole address space can be sent with no copying!

1. E.g. used for Unix FORK
2. Implemented with shadow map that specifies

real map to receive page from on fault
iii. Protection

1. Can set current protection – in use by hardware,
and maximum – limit to which it can be lowered
(e.g. prevent making it writable)

2. BIG IDEA: like mprotect(); allow programs to use
hardware features if not needed for
protection/security

10. Memory / communication
a. Goal: make communication fast by using memory
b. QUESTION: How?

i. Make it easy to send large-objects
ii. Only copy data when necessary; otherwise re-use same

data via sharing
iii. Allow external sources to manage data
iv. QUESTION: How easy is this to use? A: have to pack

data onto a single page; still have to
marshall/unmarshall. Mapping address may be
different in different address spaces.

c. High-level structure
i. AS contains memory regions (ranges of addresses that

are mapped to something)
ii. Mach flexible controls what they are mapped to for

efficient read/cow/rw sharing
iii. External pagers for backing pages

1. Memory object represents a data object obtained
from an external pager

11. External pagers

a. What are they?
i. BIG Abstraction:

1. Kernel maintains in-memory cache of an object
2. Kernel invokes pager when it moves things

in/out of cache
3. Pager invokes kernel when things are unavailable

ii. Kernel paging daemon handles physical pages
1. Looking for pages to replace (e.g. clock, LRU)
2. Tracking free pages
3. Caching common memory objects (e.g., common

executable code)
iii. COMMENT: Think caching

1. Kernel is simple cache for data
2. Complexity handled by pager

a. Moving data in/out of cache (abstracts
path to backing storage)

b. Indicating things should stay in cache
longer or should be removed sooner

iv. COMMENT: think layer of indirection
1. Kernel provides layer between program & pager
2. Kernel makes pager data available in address

space
v. Provides initial data for memory object
vi. Controls access to memory object (e.g. when can you

r/w)
vii. Provides backing for memory object (e.g. when it is

evicted)
viii. Interface:

- vm_allocate_with_pager creates one in task at an address.
Called by
 an application, memory object specifies the pager

- kernel to dm interface: (async)
 - init - init a mem objc
 - data_request - request data be filled in
 - data_write - write back data
 - data_unlock - unlock data - on a permission fault
 - data_create -

- dm callbacks to kernel:
 - data_provided; supply memory contents
 - lock: restricts access to a page - e.g. read onl
 - flush: invalidates cache, may writeback, kick from cache

 - clean_request: force data writeback, but can keep in cache
 - cache: kernel should keep objects around if not in use
 (e.g. program will be run again soon).
 - data_unavailable: notify that no mem available

Note: decoupling of data_request and data_provided; can return
more
data than requested (e.g. prefetching)

b. Benefits:
i. Most of kernel memory is treated as a cache –

transparent mixing of file cache with VM system allow
a larger file cache (Unix used just 10% at the time)

ii. Fast access to large shared objects - e.g. shared array
access

c. How are they used?
i. File system with whole-file access

1. Model: file system server process + FS DM
2. File APIs RPC to FS server

a. open file: RPC to FS server to create
memory region, returns a COW of the
region

3. Memory access to file
a. page fault causes pagee_data_request to

FS DM
b. FS DM calls disk to get data, provides data

to kernel for
c. Kernel creates COW for client of the page

4. When closed, can flush back to disk (not shown
in example)

ii. Consistent shared memory
1. Idea: allow processes on different systems to

share memory
2. Approach:

a. Have a server responsible for a page
b. Ask that server for the page
c. It provdes it to as many readers as want it
d. When get a call to change protection

(pager_data_unlock), flushes page from
other systems, THEN updates local
protection

iii. Process migration
1. Can move processes to other systems for load

balancing
2. Use consistent shared memory to fault pages

over as accessed
iv. Transactions

1. Can allow DB to have control over paging of data

2. Can provide transactional memory; by logging
writes before updating structures on disk

v. Idea: easy to implement things like this
d. Problems:

i. What if pager doesn’t respond?
1. A: have default pager that flushes pages to disk
2. Kernel knows about default pager, calls it when

other pager fails. Are not multiple default
pagers.

ii. TRUST: must a process trust its pager?
1. It has access to all the data
2. What if share with a more trusted process (e.g.

OS process vs application) from an untrusted
pager?

e. QUESTION: What is the cost?
i. Overhead of calling to usermode
ii. Trusted third parties

f. Big picture
i. Allow memory to be used for communication, not just

local storage
ii. Provide interface for external pagers to get involved on

important decisions; where data comes from,
invalidating data

iii. Efficient communication by sharing memory
iv. Treat kernel as a cache for data from other places; like

kernel-managers in pilot
12. ISSUES:

a. Was Mach successful? Pretty much the only research OS to
see commercial use

b. Supporting multiple OS never worked well; too hard to be
compatible with MS OS

c. Cost of IPC too high; unix server moved into kernel
d. MacOS

i. Mach for IPC, process & thread management, memory
management, hardware abstraction

