
AFS notes

1. Notes from reviews:
a. How are concurrent accesses handled?
b. Moving volume requires creating a copy

2. What is the key goal of AFS?
a. Scalability: more clients
b. Question: Why?

i. Popular services, such as sharing data, tend to get more
popular

ii. Would like incremental growth – add new client, add a server
to a pool, rather than stepwise growth

c. Implications:
i. Security becomes important (Note to holly: addressed in

other papers; they do solve the problem in a good way)
ii. Heterogeneous hardware/software
iii. Hard to maintain same semantics as for a single site

3. Goals
a. Network file system
b. Scale – how big?

i. Large number of clients
ii. Client performance not as important
iii. Central store for shared data, not diskless workstations

c. Consistency
i. Some model you can program against

d. Reliability
i. Need to handle client & server failures

e. Naming
i. Want global name space, not per-machine name space

1. compare to NFS, CIFS
2. Gain: transparency if file moved

4. AFS version 1:
a. Process per client – like RPC, Pilot
b. Name lookups on server
c. Cache validation with callback on access
d. Result:

i. Low scalability: performance got a lot worse (on clients) when
of clients goes up

ii. QUESTION: what was bottleneck?
1. Server disk? Seek time ? disk BW?
2. Server CPU?
3. Network?
4. Client CPU/Disk?

e. Evaluation performance: Andrew Benchmark
i. Used by many others
ii. QUESTION: What does it represent?

1. A: nothing.
2. Has a mix of workloads, can see how they respond

iii. Pieces:
1. Make dir – create directory tree: stresses metadata
2. Copy – copy in files – stresses file writes / creates
3. Scan Dir (like ls –R) – stresses metadata reads
4. ReadAll – find . | wc – stresses whole file reads
5. Make – may be CPU bound, does lots of reads + fewer

writes
iv. QUESTION: What is missing?

1. All pieces do whole-file reads / writes
2. Missing productivity applications, scientific

applications
v. QUESTION: they use a different platform for prototype and

final version. is this relevant?
1. A: the prototype evaluation is to show where

bottlenecks are
2. A: evaluation of final one shows what bottlenecks

remain, compare against other systems
5. AFS v2

a. CONTEXT: designed for systems with local disks
b. QUESTION: What is the goal?

i. Local-file Latency?
ii. Local-file Throughput?
iii. Server throughput?
iv. Server latency?

c. Transparent to clients – match Unix naming / Whole file caching
i. QUESTION: Why not partial files?
ii. Usage study shows most files accessed in entirety
iii. Simplifies protocol / consistency
iv. Read / write handled completely locally
v. QUESTION: What workload is this optimized for

d. Local disk cache
i. QUESTION: Why? Increases latency (local disk access)
ii. Reduces load on server by having a larger client cache
iii. Stat information in memory (to avoid hitting disk, plus may

be hard to write to disk)
e. Relaxed but well-defined consistency semantics

i. Get latest value on open
ii. Changes visible on close

1. Write-through to the server (minimizes server
inconsistency, but increases load compared to write-
back when evicted)

iii. Read/write purely local – get local unix semantics
1. programs not location-transparent

iv. Metadata is global synchronous
v. QUESTION: different from Unix. Is it a problem? When?

1. Unix semantics
a. Any change to a file or file system visible to next

operation (e.g. read returns data just written)
b. The last-close semantic is the semantic that

requires that an open file remain available to any
process which has the file open regardless of any
changes in file or process characteristics which
may take place after the file is opened. It is
called the last-close semantic because the best
known consequence of the last-close semantic is
that when a file is deleted, the file is not
removed until the file is closed by the last
process which has it open.

vi.
f. Global name space: /afs

i. Names are same on all clients
ii. Can move volumes between servers, nothing changes

g.
6. Performance improvements

a. Call backs
i. Server notifies client if file changes
ii. QUESTION: RPC paper said use datagrams, not connections,

maintain no state on server for scalability and crash recovery.
What is the difference?

iii. QUESTION: Why?
1. Reduces load on server- no client polling

iv. How bad is it for the server?
1. QUESTION: how much state does the server manage?

a. Call back per file cached
2. QUESTION: What can the server do to reduce this?

a. Limit # of callbacks
v. QUESTION: How does this impact performance?

1. Closing a file can be slow because other cachers must
be notified synchronously (before changing the data).

vi. What happens on failure?
1. After client failure, clients re-establish all callbacks
2. After server failure, …
3. QUESTION: do clients re-establish callbacks?

vii. QUESTION: are there other alternatives to callbacks
1. Leases: callbacks that timeout automatically and don’t

have to be dropped. Less scalable – requires more
frequent polling

b. Name resolution
i. Id-based names

1. Servers never do path lookups
a. PRINCIPLE: make clients do the work – use the

CPU cycles
ii. 2-level name space

1. Volumes + Files + uniquifier
a. Use separate vnode # instead of inode# - not

expose internal information or format of inode#s
2. WHY?

a. Efficiency: search n+m instead of n*m locations
3. Why Uniquifier?

a. Can reuse table slots – makes lots of things easy
if you don’t have to check for duplicates

b. HOW IMPLEMENT? Machine ID + counter?
iii. location independent names

1. Can move volumes between servers
iv. Clients cache volume à server mapping

1. Volume location is a hint
a. Piece of information that can improve

performance if correct, but has no semantically
negative consequences if incorrect

c. Threaded single-process server
i. Thread per request, not per client
ii. Allows overlapped network I/O
iii. QUESTION: How do you set the number? What determines the

number you need?
d. New open-by-ID file system call

i. Can open by inode number
ii. QUESTION: is it required that you have an ID for opening

files?
1. e.g. Windows makes this hard – doesn’t have inode

numbers
e. Summary: opening a file

i. Walk path recursively
1. If directory in cache with callback, go on
2. If in cache w/o callback, check
3. if not in cache, fetch + get callback

ii. Open file
1. If in cache with callback, use

2. W/o callback – very callback
3. not in cache – fetch w/ callback

f. Scalability results:
i. QUESTION: do they show improved scalability?

1. Definition from Cisco: Capacity of a network to keep
pace with changes and growth.

ii. QUESTION: are their results consistent?
1. ANSWER: they do give standard deviations from

multiple runs
iii. Helped a lot
iv. High level points:

1. Shift work to clients
2. Call-backs instead of polling
3. Threads instead of processes

g. QUESTION: What workload is this optimized for?
h. QUESTION: what changes would you make for large file / random

access workloads?
i. QUESTION: What else would have to change?
j. QUESTION: What happens when you open / read / write a file?

i. Lookup each component directory of path name
ii. Check cache first – if have in cache, and have callback, use

1. Else ask server to update callback or fetch from server
iii. Read/write: do locally
iv. Close: copy changes up to server
v. QUESTION: what about temp files?

1. Don’t put them on AFS – use local disks
k. New semantics:

i. Get latest version on close
ii. Write everything locally
iii. Copy all back on close
iv. QUESTION: how compare to Unix semantics?
v. QUESTION: how would you detect the difference?

7. Manageability Improvements
a. Volumes

i. Contain a bunch of directories, but small enough to finit
many on disk

1. Allows management at a granularity higher than files,
but smaller than disks

2.
ii. Unit of partitioning

1. Use recursive copy-on-write to move data
iii. Unit of replication
iv. Unit of backup

1. QUESTION: How do you get a consistent backup?
2. Use copy-on-write to CLONE

v. Unit of applying quotas
vi. Logically separate from FS name space and underlying disk

partitions
1. Table of mount points indicates name space of

volumes
vii. Volume mapping (what server has a volume) is SOFT STATE

1. Can try to use it, but if stale, will learn real value
2. PURELY OPTIMIZATION, LOW COST

8. AFS techniques
9. AFS scaling techniques

a. Location transparency
i. How?

1. Name doesn’t specify the machine containing the data
2. Client machines aren’t responsible for remembering

where data is
ii. Why?

1. Can repartition data between servers
2. Can move data to a new server without accessing all

clients
iii. Impact?

1. Client names not always the most useful
2. Challenges in merging two organizations – need a truly

global namespace
b. Client caching

i. How?
1. Cache lots of data on disk
2. Cache whole files
3. Non-coherent caching of filename->server mappings:

hints
ii. Why?

1. Reduces load of serving bytes from server
2. Reduces cache coherence – just check on open/close,

not later
3. Most reads/writes go to local disk
4. Non-coherent names act as hints; can use, but detect

failure and recover
iii. Impact?

1. Latency may be worse, as client disk is slower than
server memory

2. Latency to read large files may be bad
3. Can’t access files bigger than local disk
4. Partial file caching without locking exposes problems

with demand paging; subsequent pages may not be
available

c. Notification

i. How?
1. Clients ask for callbacks when a file changes

ii. Why?
1. Removes need to poll for changes to a file, e.g. check if

changed on open
iii. Impact?

1. Server must record state about client caches
2. Complicates failure recovery; must re-establish

callbacks
d. Partition data / aggregate data

i. How?
1. Group directories into volumes, smaller than a disk

ii. Why?
1. Small enough to be reasonable moved for load

balancing
2. Admins can think about volumes, not files or

directories
iii. Impact?

1. May be difficult to support large files, directories with
large amounts of data (exceeds volume size limits)

e. Replication
i. How?

1. Maintain multiple copies of read-only data
ii. Why?

1. Spreads load across more than one server
iii. Impact?

1. Must be concerned about how to update read-only
data (it does happen occasionally)

2.
f. Relaxed semantics

i. How?
1. Consistency is maintained as open-close consistency,

not read-write consistency
ii. Why?

1. Allows a single consistency check – when opening a file
2. More accesses go to local disk

iii. Impact?
1. Programs doing block-based sharing (e.g. databases)

not supported
2. Clients that can’t cache whole files (e.g. small devices)

need a separate protocol
g. Functional Specialization

i. How?
1. File servers are dedicated machines with more memory

and disk

ii. Why?
1. Removes need to fairly share between interactive tasks

and file server
2. Can optimize hardware/software on server; e.g.

different scheduling decisions
3. System can depend on more resources; not as worried

about efficiency in low-resource environment
4. Can assume file servers trusted, managed by

centralized administration
iii. Impact?

1. Not application to all environments – e.g. peer sharing
h. Move work to client

i. How?
1. Clients do name->id parsing

ii. Why?
1. Clients have extra cycles; they are waiting for a

response anyway
2. Client cycles scale with the number of cycles

i. Exploit workload properties
i. How?

1. Treat read-only files differently
2. Tmp directories local

ii. Why?
1. Can avoid cache coherence
2. Can replicate

j. Batching
i. How?

1. Do as many operations at once as
2. Grant/revoke multiple callbacks at once
3. Transfer more data at once

ii. Why?
1. Amortize startup costs

k. Minimize system-wide knowledge and change:
i. How?

1. Hints for volume->server mapping
ii. Why?

1. clients don't need full knowledge of all
servers; file location at server level rarely
changes

2. Server can redirect them to correct
location if mapping is old

10. Limits:
a. Can’t support disk-less clients well
b. Can’t handle large files well – need to copy in entirety
c. Latency to first byte for uncached files is high

11. Comparison to NFS
a. Implemented on RPC / XDR for data format conversion

i. QUESTION: Why? Is it necessary? Easier to port /
heterogeneous

ii. Can use RPC-level security solutions
b. Stateless protocol

i. QUESTION: Why? Easy recovery from failure
ii. No information retained across RPC invocations
iii. Easy crash recovery – just restart server, client resends RPC

request until server comes back
iv. Server doesn’t need to detect client failure
v. Problem: what if client retries a non-idempotent operation

1. E.g. remove?
c. Servers don’t do name operations

i. Clients work with File Handles – like AFS FID,
d. Naming

i. Servers can export any directory (like Windows sharing)
1. Only exports a single file system – doesn’t cross mount

points
ii. Clients mount anywhere in name space
iii. Each client can mount files in a different place
iv. QUESTION: What are benefits / drawbacks?
v. QUESTION: How handle cycles?

1. A: NFS servers won’t serve files across mount points
2. Clients must mount next file system below in the FS

hierarchy
3.

e. NFS file semantics
i. Clients cache data for 30 seconds
ii. Clients can used cached data for 30 seconds without

checking with server
iii. Servers must write data to disk before returning (no delayed

writing)
1. QUESTION: What are performance implications?

iv. Attribute cache for file attributes – kept for 3 seconds
1. Used to see if attributes have changed
2. Discarded after 60 seconds

f. Caching
i. Servers cache blocks
ii. Clients cache blocks, metadata

1. Attribute cache has metadata, checked on open,
discarded after 60 seconds

2. Data cache flushed after 30 seconds
iii. ssues:

1. Unix files are removed until last handle closed

a. On stateless server, causes file to be deleted
while still in use

b. Solution in NFS: rename file, remove on local
close

2. Permissions may change on open files
a. Unix allows access if have open handles
b. NFS may deny access

i. Solution: Save client credentials at open
time, use to check access later

ii. NOTE: server doesn’t do enforcement here
g. QUESTION: What happens when you open / read / write a file?

i. Open: client checks with remote sever to fetch or revalidate
cached inode (if older than 30 seconds)

ii. Reads handled locally, writes written back after 30 seconds
iii. Nothing happens on close
iv. Data flushed after 30 seconds – may not be seen by other

clients for another 30 seconds
v. Write: delayed on client for 30 seconds, then written

synchronously to server
h. Design essence

i. Stateless server for easy crash recovery (keep system simple!)
ii. Relax consistency (no guarantees) to get better performance
iii. Pure client server; no distributed servers

i. Results:
i. Bizarre consistency semantics
ii. Higher server load – must interact with client on reads /

writes
iii. Less caching on client
iv. Faster error recovery – can just reboot server
v. More network packets
vi. Lower latency – don’t have to wait to download file on open.

Better for large random access files
12. Approach to consistency / durability

a. Move requirement of when files are consistent / durable from
system to application

i. E.g. delayed write after 30 seconds
ii. E.g. delayed check for consistency after 30 seconds

b. Following Unix semantics
i. NFS gives up, tries to emulate on client
ii. AFS weakens slightly with open-close instead of read-write

consistency
iii.

c. Naming: single global name space vs. per machine spaces
i. QUESTION: Can you emulate per-machine with single global?

Yes, use symlinks

d. Mounting
i. How does AFS / NFS handle it?

1. AFS resolves name via DNS?
13.
14.

