
Micro-architectural & Architectural

Implications of Meltdown & Spectre
@ Wisconsin, 04/2019

Mark D. Hill, U. Wisconsin-Madison, USA

1. Background, Meltdown, & Spectre

2. Repair Micro-Architecture

3. Change Architecture & Methods?

Computer Architect, Not Security Expert

Executive Summary

Architecture 1.0: the timing-independent functional behavior of a computer

Micro-architecture: the implementation techniques to improve performance

Question: What if a computer that is completely correct by Architecture 1.0

can be made to leak protected information via timing, a.k.a., Micro-Architecture?

Meltdown leaks kernel

memory, but software &

hardware fixes exist

Spectre leaks memory

outside of bounds checks or

sandboxes, and is scary

What TO-DO, since it can’t be “correct” to leak protected information?

• We will repair Micro-Architecture: Manage, not fix, like crime

• We should define Architecture 2.0 and/or change methods

Computer Architecture 0.0 -- Pre-1964

Software Lagged Hardware

● Each new machine design was different

● Software needed to be rewritten in assembly/machine language

● Unimaginable today

Going forward: Need to separate HW interface from implementation

Each Computer was New

● Implemented machine (has mass) → hardware

● Instructions for hardware (no mass) → software

Computer Architecture 1.0 -- Born 1964

IBM System 360 defined an instruction set architecture

● Stable interface across a family of implementations

● Software did NOT have to be rewritten

Architecture 1.0: the timing-independent functional behavior of a computer

Micro-architecture: implementation techniques that change timing to go fast

branch (R1 >= bound) goto error

load R2 ← memory[train+R1]

and R3 ← R2 && 0xffff

load R4 ← memory[save+SIZE+R3]

Note: The code is not IBM 360 assembly, but is the example used later.

Micro-architecture Harvested Moore’s Law Bounty

For decades, every ~2 years: 2x transistors, 1.4x faster & 1x chip power possible;

2300 transistors for Intel 4004 → millions per core & billions for caches

(Micro-)architects took this ever doubling budget to make each processor core

execute > 100x than what it would otherwise (including caches).

Key techniques w/ tutorial next:

● Instruction Speculation

● Hardware Caching

Hidden by Architecture 1.0: timing-independent functional behavior unchanged

Instruction Speculation Tutorial

Many steps (cycles) to execute one instruction; time flows left to right →

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation

add

load

branch

and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store (memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch direction

E.g., Intel Skylake has

224-entry reorder buffer

w/ 14-19-stage pipeline

Hardware Caching Tutorial

Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

● Like a software cache: speculate near-term reuse (locality) is common

● Like a hash table: an item (block or line) can go in one or few slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

--0

--1

--2

--3

12?

Miss
Insert 12

120

--1

--2

--3

07?

Miss
Insert 07

120

--1

--2

073

12?

HIT!

No

changes

120

--1

--2

073

16?

Miss
Victim 12

Insert 16

160

--1

--2

073

Note 12

victimized

“early” due

to “alias”

E.g., Intel Skylake has 3 cache levels

w/ 0.25ns L1 hit vs. ~100ns DRAM

Interactions among 4-28 cores

(coherence good, no bank conflict, ...)

Whither Computer Architecture 1.0?

Architecture 1.0: timing-independent functional behavior

Question: What if a computer that is completely correct by Architecture 1.0

can be made to leak protected information via timing, a.k.a., micro-architecture?

Implication: The definition of Architecture 1.0 is inadequate to protect information

This is what Meltdown and Spectre do. Let's see why and explore implications.

Side-Channel Attack: SAVE Secret in Micro-Arch

1. Prime micro-architectural state
a. Repeatedly access array train[]to train branch predictor to expect access < bound

b. Access all of array save[]to put it completely in a cache of size SIZE

2. Coerce processor into speculatively executing instructions that will be nullified

to (a) find a secret & (b) save it in micro-architecture

branch (R1 >= bound) goto error ; Speculate not taken even if R1 >= bound

load R2 ← memory[train+R1] ; Speculate to find SECRET outside of train[]

and R3 ← R2 && 0xffff ; Speculate to convert SECRET bits into index

load R4 ← memory[save+SIZE+R3] ; Speculate to save SECRET by victimizing

memory[save+R3] since it aliases in cache with new access memory[save+SIZE+R3]

3. HW detects mis-speculation

Undoes architectural changes

Leaves cache (micro-architecture) changes (correct by Architecture 1.0)

To Over-Simply: SAVE Secret in Micro-Arch

branch (R1 >= bound) goto error

load R2 ← memory[train+R1] ; Get SECRET

and R3 ← R2 && 0xffff

load R4 ← memory[save+SIZE+R3] ; Put SECRET in address

to perturb cache

Side-Channel Attack: RECALL Secret from Micro-Arch

4: Probe time to access each element of save[]--micro-architectural property;

If accessing save[foo] slow due to cache miss, then SECRET is foo. A leak!

5: Repeat many times to obtain secret information at some bandwidth. (More

shifting/masking needed to get all SECRET bits victimizing 64B cache lines)

Well-known in 1983/85 DoD “Orange Book”

Covert timing channels include all vehicles that would allow one process to signal

information to another process by modulating its own use of system resources in

such a way that the change in response time observed by the second process would

provide information. --TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA

But seemed fanciful
Spy vs. Spy, Mad Magazine, 1960

Meltdown (a.k.a. Google Variant 3)

Instead of branch/load: user load of kernel memory that traps

Leaks kernel memory at up to 500KB/s on Intel x86-64 cores

Intel appears to start cache miss before trapping (allow micro-arch changes)

➔ Ok by Architecture 1.0 w/ High performance but Meltdown!

Others appear to trap without cache miss (e.g., at address translation)

➔ Ok by Architecture 1.0 ➔ No Meltdown

Solutions

SW: Don’t map kernel ➔ performance loss on syscalls

HW: Trap early (as done by many vendors & claimed for new Intel Cascade Lake)

“Easy” to stop speculation early: SW protection boundary known to HW

Spectre (Google Variants ≠ 3)

Classic side-channel attack w/ deep micro-arch info

• Most—if not all—cores & vendors

• Load does NOT trap (Meltdown traps)

• Violation of managed language or sandbox

• Hard as SW protection boundary unknown to HW

Variants

1. Use branch mis-prediction to let Javascript steal from Chrome browser

2. Uses indirect branches (returns) & return-oriented programming

3. Meltdown

4. Re write buffer bypass

... Coherence, functional units, TBD

Page tables (L1TF 08/14/2018 ~ Meltdown)

Performance ➔ Speculation ➔ Spectre

What to do?

Ref 1/2: Spectre Variants, 10/2018, for IEEE Micro
Variant Name and Gist Gist of Mitigation Strategies

V1 (Bounds Check Bypass). Mistrained conditional branch predictor used

to violate program semantics by speculatively accessing data beyond an

array limit.

Either enforce instruction stream serialization with respect to later loads (e.g. through an “lfence” on x86) or

use speculative load clamping to constrain bounds of array. LLVM calls this “speculative load hardening”.

V1.1 (Bounds Check Bypass Store). Similar to variant 1 but applies to

stores, allowing e.g. speculative buffer overflow/stack overflow with

restoring of returns.

Careful auditing for potentially risky stores, aided by automated tools (smatch, etc.) or compiler lift (e.g.

LLVM speculative load hardening, MSVC). Enforce instruction stream serialization or use clamping.

V1.2 (Read-only Protection Bypass). Hardware may implement lazy

enforcement of page table protections allowing speculative writes to read-

only data.

Extension of Bounds Check Bypass Store. Relying on read only memory protections against e.g function

pointer overwrite is not sufficient. It is necessary to protect against potential overwrites into RO memory.

V2 (Branch Target Injection). Mistrained indirect branch predictor Branch

Target Buffer (BTB) speculatively executes attacker-controlled “gadgets”.

Limit speculation based upon the Branch Target Buffer when crossing privilege boundaries, flush predictor

state when transitioning from one task to another, limit speculation based upon BTB between SMT threads.

V3 (Rogue Data Cache Load, aka “Meltdown”). User load that

speculatively accesses kernel space. See [Melt]

Exploitation requires both a valid address translation as well as (typically) data present in the L1 data

cache. Either separate address space between privileged and unprivileged execution states, and/or ensure

data is not present in the cache and cannot be loaded by attacker. On some architectures, implement Page

Table Isolation (PTI) between user/kernel, on others use an L1D flush.

V3a (Rogue System Register Read). Speculative reads to normally

inaccessible system registers may be used to infer information, such as

page table base address used to point to all active page tables

In some cases, updated microcode (etc.) can be used to make such reads serializing and not execute

speculatively. In other cases, it may not be possible to prevent certain information leakage - such as the

location in memory of page table base address.

V4 (Speculative Store Bypass). Speculative reads may proceed prior to

determining whether a conflicting store exists in the store buffer (memory

disambiguation)

Disabling speculative store buffer bypassing (aka “memory disambiguation”) either globally, or on a per-

application basis, is one mitigation path. Another is aggressive use of process-level isolation (separating

contexts of execution), but this is difficult for some cases. Linux eBPF and Java runtimes are examples

where a per-process control to disable speculative bypassing of the store buffer is typically employed.

Ref 2/2: Spectre Variants, 10/2018, for IEEE Micro

Variant Name and Gist Gist of Mitigation Strategies

BranchScope. Conditional directional branch predictor attack used to infer direction of

branches taken in vulnerable code (for example, cryptographic libraries)

Two broad strategies exist - careful removal of branch dependencies upon secret data, and “if-conversion” in

which branches are converted to sequential code using conditional instructions. The latter can be implemented at

the compiler level, while the former is purely manual.

LazyFPUsave/restore. Processor implementation may be optimized to avoid saving Floating

Point Unit (and vector) context when switching tasks until the new task performs an FPU

operation. Vulnerable hardware still allows speculative reads of the disabled FPU state.

Disabling lazy save/restore of Floating Point Unit state. In many cases, this actually improves performance on

contemporary processors, particularly those which have hardware assisted save/restore FPU instructions.

TLBleed. A temporal attack against Simultaneous Multithreading (SMT) implementations

with tightly shared TLBs (Translation Lookaside Buffers) allowing precise measurement of

TLB state on one thread to infer execution of process running on the peer thread.

The simplest solution is to carefully schedule sensitive (e.g.) cryptographic operations such that they do not occur

on a sibling SMT thread (e.g. “Hyperthread”) at the same time as an untrusted workload is running on its peer.

Other mitigations include refactoring libraries to use only constant time operations, which may not be feasible or

possible (hardware may not support this).

SpectreRSB/ret2spec. Return Stack Buffer manipulated in order to divert speculative

execution of a function return into an attacker-determine leak gadget.

RSB “stuffing” is employed to ensure the RSB is filled with a benign delay gadget. This RSB stuffing approach is

also used as part of the mitigation for Spectre-v2 on certain process (e.g. Intel Skylake+) wherein an underfill in

the RSB causes speculation from the BTB. Thus, it is preferable to reuse the existing mitigation.

NetSpectre. Similar to Spectre but performed over a network using a combination of a leak

gadget (used to alter microarchitectural state) and transmission gadget (used to transmit

this altered state across a network).

Mitigation is similar to Spectre-v1 however the impacted code is potentially very significant. As a result, other

solutions at the network layer may be employed, or the impact of leakage may be reduced through careful

application of rekeying during transactions. Very sensitive deployments may choose to recompile significant

portions of applications using speculative load hardening techniques e.g. as found in LLVM.

L1TF (L1 Terminal Fault, “Foreshadow” - SGX). Speculative loads to virtual addresses

translated by Page Table Entries (PTEs) with “present” bit not set may result in the

processor forwarding the incorrect physical address to the L1 data cache (L1D), allowing

reads of attacker-controlled addresses if in the cache.

L1TF requires that data be present in the L1 Data cache of impacted Intel processors, and that it be possible to

construct a vulnerable page table entry. For the “bare metal” use case of an OS on hardware, it is possible to

protect against malicious applications by ensuring that all “not present” OS PTEs are masked such that the

address is outside of populated physical memory. For virtual machines, it is necessary to employ an L1D cache

flush via microcode assist on VM entry.

Spectre variants after October 2018? To be determined.

Outline

1. Background, Meltdown, & Spectre

2. Repair Micro-Architecture

3. Change Architecture & Methods?

To Over Simplify: Just Eliminate Speculation? No

Modern Processors (Intel Skylake example numbers)

● 224-entry reorder buffer w/ 14-19-stage pipeline

● 3 cache levels: speculate hit for 0.25ns cycle vs. ~100ns DRAM

● Interactions among 4-28 cores (speculate coherence good, no bank conflict, …)

Naïve elimination of speculation & caches would slow by >> 10X

Regardless on exact number

➔ Not viable for a general-purpose processor product

➔ Must more creatively mitigate timing channels

Repair Microarchitecture

W/o speculation/caches >> large performance loss

While (1)

1. Find timing channel with concerning bandwidth

2. Fix it with performance and/or complexity cost

Not easy

• Does shared cache way-partitioning cut timing channels (e.g., Intel CAT)?

• No, need changes to replacement algorithm & “shared” hits (see DAWG)

Treat timing channels like crime: Manage without solving

Goal: MIN(“security/police/etc. cost” + “crime cost”)

Micro-Architectural Ideas

● Isolate branch predictor, BTB, TLBs, etc. & flush/restore on context switch

● Partition caches among trusted processes (& flushed on context switch?)

● Reduce aliasing information, e.g., fully-associative caches or fancy indexing

● Randomize to lower BW; degrade/hide “timers”

● HW Protection w/i user address space

e.g., trap if javascript accesses protected browser

● Undo speculation (as much as possible)

● Constant-time execution?

(at some granularity: instrn, function, program)

''He treats us all the same -- like dogs.’’

--Henry Jordan on Vince Lombardi

Whither High Performance & Timing-Channel “Free”?

Happy knee with good performance & good safety?

I fear not & arrives now as Moore’s Law bounty slows

Safety →

P
e
rf

o
rm

a
n
c
e
 →

safe

perf

Bifurcate! How?

In Time: Modes for fast(er) & safe(r)

• Disable some speculation & partition more

• Dynamically flexible but limited

In Space: Fast Cores, Safe Cores, etc.

• Extension of what is being done for security

• Allows extremes; plays well w/ dark silicon

In Use:

• Cloud provider charges more for exclusive VMs

• Don’t execute downloaded code

Outline

1. Background, Meltdown, & Spectre

2. Repair Micro-Architecture

3. Change Architecture & Methods?

Universe of Computer Behavior

Arch Specification

X

X violates Spec: bug!

A

Implementation A refines Arch B

B refines Arch

Desirable (no

info leak) B reveals FLAW

in Arch

C

Patch u-arch?

Arch 2.0

refines Arch 1.0

& Desirable

Need Computer Architecture 2.0?

With Meltdown & Spectre, Architecture 1.0 is inadequate to protect information

Augment Architecture 1.0 with Architecture 2.0 specification of

● (Abstraction of) time-visible micro-architecture?

● Bandwidth of known (unknown?) timing channels?

● Enforced limits on user software behavior? (c.f., KAISER)

● Protect user-space regions & suppress speculation

None seem good enough to me (yet)

Computer Architecture 2.0: More Accelerators?

More generally, can we reduce our dependence on SPECULATION?

Accelerators!! GPU, DSP, IPU, TPU, ... [Hennessy & Patterson 2018 Taxonomy]

● Dedicated Memories

● More ALUs

● Easy Parallelism

● Lower precision data

● Domain Specific Language

Yavits et al. MultiAmdahl, 2017

Speculation NOT a first-

order feature!

But accelerators have timing channels

E.g., branch & memory divergence or bus & memory controller conflicts

Formal Methods but Hard

Tools:

• GLIFT [Tiwari ASPLOS’09] (follow-ons)

• SecVerilog [Zhang, ASPLOS’15]

Can’t easily dynamically check for information exfiltration

See hyperproperties of set of executions [Clarkson & Schneider, ’10]

Presumes a spec to check against (Architecture 2.0)

Spatial bifurcation helps as methods may be easier to apply to safe cores

Open Architecture & Micro-Architectures?

Security Experts

• Disdain “security by obscurity”

• In favor of many “eyeballs”

Open-source SW can help security

• More eyeballs but bad implementation is still bad

Whither open-source HW?

• Interfaces: Instruction Set Architecture

• Implementations: libraries for low- to medium-end

“Most future HW security ideas with be tried with RISC V first.” – D. Patterson

We Should Talk

“Computer Architect, Not Security Expert”

➔ I am part of the problem

20th Century

• Layers worked: Roman dīvide et imperā

• Low BW among SW/HW/Security/Formal

21st Century needs

• Cross-layer, end-to-end solutions

• High BW inclusive discussions

in public and confidential

Executive Summary

Not bugs: Micro-Architecture correct to Architecture 1.0 spec

Flaws in the half-century-old timing-independent definition of Architecture 1.0

What TO-DO, since it can’t be “correct” to leak protected information?

• We will repair Micro-Architecture: Manage, not fix, like crime

• We should define Architecture 2.0 and/or change methods

Speculation leaks protected information but is essential for performance

