Differential Privacy

Amrita Roy Chowdhury

Slides modified from Vitaly Schmatikov, Katrina Ligett

"We do not collect **personally identifiable information**"

National Institute of Standards and Technology U.S. Department of Commerce

Special Publication 800-122

Guide to Protecting the Confidentiality of Personally Identifiable Information (PII)

Recommendations of the National Institute of Standards and Technology

Erika McCallister Tim Grance Karen Scarfone

- HIPAA "Safe Harbor" De-Identification of Medical Record Information
- Remove 18 specified PIIs from data

Dataset

Remove PII

Anonymity!

- Personal Identifiable Information PII
- Quasi Identifiers
- Identifiers vs Sensitive Attribute

PII		QID	SA		
Name	Zipcode	Age	Sex	Disease	
Alice	47627	59	F	Prostate Cancer	
Bob	47621	52	М	Ovarian Cancer	
Charles	47624	35	М	Flu	
Dave	47630	43	М	Heart Disease	
Eve	47650	37	F	Heart Disease	

- NIST "any information about an individual maintained by an agency,... that can be used to distinguish or trace an individual's identity..."
- Name, SSN, Credit Card, Full address, Phone Number
- Legal concept- not a technical one

Quasi Identifiers

- Attributes that may not be uniquely identifying on their own, any attribute can be potentially identifying in combination with others
- Age, Gender, 5 digit Zipcode

Sensitive Attributes

- Medical records, salaries, etc
- These attributes is what the researchers need, so they are released unmodified

PII		QID	SA		
Name	Name Zipcode		Sex	Disease	
Alice	47627	59	F	Ovarian Cancer	
Bruce	47621	52	М	Prostate Cancer	
Charles	47624	35	М	Flu	
Dave	47630	43	М	Heart Disease	
Eve	47650	37	F	Heart Disease	

Not Private

PII			QID		SA					
Name		Zipcode		Age		Sex		Disease		
Alice		47627		59		F		Ovarian Cancer		
Bruce	ć	47621		52		M		Heart Disease		
Charle	es	47624		35		M		Flu		
Dave		47630		43		M		Heart Disease		
Eve	Eve 47650			37		F		Heart Disease		
	-									
	QID							SA		
Zipcode				Age		Sex		Disease		
	47627			59		F		Ovarian Cancer		
	47621			52	M			Heart Disease		
	47624			35	35			Flu		
		47630		43		Μ		Heart Disease		

F

Heart Disease

47650

37

Private

Some Privacy Disasters

Netflix Settles Privacy Lawsuit, **Cancels Prize Sequel**

Taylor Buley Contributor The Firewall Contributor Group () News developer, in all senses of the phrase

- On Friday, Netflix announced on its corporate blog that it has settled a lawsuit related to its Netflix Prize, a \$1 million contest that challenged
- machine learning experts to use Netflix's data to produce better 9 recommendations than the movie giant could serve up themselves.

TECHNOLOGY

in

f 😼 🖾 🖷 🤗

Harvard Researchers Accused of **Breaching Students' Privacy**

Social-network project shows promise and peril of doing social science online

The Privacy Report.

Blog

Contributors About Contact

OCTOBER 28, 2009

Back to the Future: NIH to Revisit Genomic Data-**Sharing Policy**

By: Dan Vorhaus

Category: Genomics

Topic: Database of Genotypes and Phenotypes, dbGaP, genetic privacy, GenomeWeb, GWAS, Kaiser Permanente, NHLBI, NIH, Personal Genome Project, PLoS Genetics, WGS

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 13 years ago

X

Yet Another Update: AOL: "This was a screw up"

Microdata

	QID	SA							
Zipcode	Age	Sex	Disease						
47627	59	F	Ovarian Cancer						
47621	52	М	Prostate Cancer						
47624	35	М	Flu						
47630	43	М	Heart Disease						
47650	37	F	Heart Disease						

Voter Registration Data

Name	Zipcode	Age	Sex	
Alice	47627	59	F	
Bruce	43756	35	М	
Carol	47677	42	F	
Dan	47632	47	М	
Ellen	42789	23	F	

Latanya Sweeney's Attack (1997)

Massachusetts hospital discharge dataset

SSN	Name	ricity	Date Of Birth	Sex	ZIP	Marital Status	Problem
			09/27/64	female	02139	divorced	hypertension
	199	2	09/30/64	female	02139	divorced	obesity
		asian	04/18/64	male	02139	married	chest pain
		asian	04/15/64	male	02139	married	obesity
		black	03/13/63	male	02138	married	hypertension
		black	03/18/63	male	02138	married	shortness of breath
		black	09/13/64	female	02141	married	shortness of breath
		black	09/07/64	female	02141	married	obesity
	2 C	white	05/14/61	male	02138	single	chest pain
		white	05/08/61	male	02138	single	obesity
		white	09/15/61	female	02142	widow	shortness of breath

Voter List

- [Name	Address	City	ZIP	DOB	Sex	Party	
- [
- 1					*******	*******		
1	Sue J. Carlson	1459 Main St.	Cambridge	02142	9/15/61	female	democrat	
1								

Figure A dentifying anonymous data by linking to external data

Public voter dataset

NETFLIX

AOL User 4417749

- AOL query logs have the form
- <AnonID, Query, Query Time, ItemRank, ClickURL<truncatedURL>
- Sample queries of user with AnonID 4417749: "numb fingers", "60 single men", "dog that urinates on everything", "landscapers in Lilburn, GA", several people with the last name Arnold
- Only 14 citizens with the last name Arnold near Lilburn
- NYT contacted the 14 citizens, found out AOL User 4417749 is 62year-old Thelma Arnold

Lesson Learnt PII is technically meaningless

PII is info "with respect to which there is a reasonable basis to believe the information can be used to identify the individual."

• Any piece of data can be used for re-identification

Narayanan, Shmatikov CACM column, 2010

What analysis can we do?

- Limit to analysis on large population
- Aggregate Statistics
- Reveal ordinary facts
- All of the above susceptible to leakage

What should we guarantee?

 Output should not reveal anything about an individual that could not have been learnt without access to the input

Is this possible?

Privacy/Utility Tradeoff

What can we guarantee?

 Output should not reveal anything significantly more about an individual than what could have been learned from the same analysis by omitting the individual's data from the input database

What can we guarantee?

- Think of the output to be randomized
- Promise to individual if you leave the database the output does not change by much
- Incentive for individual data owners since output does not change by much whether you participate, might as well give your data

Statistical Database Model

- X = Set of all possible rows for a person
- Database x is a set of rows in $\mathbb{N}^{|X|}$, i.e., a histogram representation

Analysts Objective

- Wants to compute some statistics on $\mathsf{D} \in \mathbb{N}^{|\mathsf{X}|}$
- Preserve privacy of individuals
- Find a randomized mapping from D to some output space such that it masks small changes in D

Neighboring Datasets

Two datasets D_1 and D_2 are defined to be neighboring datasets if they differ in a single row

$$||\mathsf{D}_1 - \mathsf{D}_2|| \le 1$$
$$\mathsf{D}_1, \mathsf{D}_2 \in \mathbb{N}^{|\mathsf{X}|}$$

Algorithm \mathcal{A} is ε - differentially private if, for all output $S \subseteq Range(\mathcal{A})$ and two databases D_1 and D_2 such that they differ only in a single row

$$Prob(S \in \mathcal{A}(D_1)) \leq e^{\varepsilon} Prob(S \in \mathcal{A}(D_2))$$

$$e^{\varepsilon} \sim (1 + \varepsilon)$$

- Blue Line Probability to receive certain output t given D'
- Orange Line Probability to receive certain output t given D
- D and D' are neighboring datasets

- Is a statistical property of the mechanism
- Many ways to implement it with same privacy guarantee but different utility
- Independent of the adversary's computational power
- Unaffected by any auxiliary information

Approximate Differential Privacy

Algorithm \mathcal{A} is (ε, δ) - differentially private if, for all output $\mathcal{S} \subseteq Range(\mathcal{A})$ and two databases D_1 and D_2 such that they differ only in a single row

$$Prob(\mathcal{S} \in \mathcal{A}(D_1)) \leq e^{\varepsilon} Prob(\mathcal{S} \in \mathcal{A}(D_2)) + \delta$$

Differential privacy

Apple will not see your data

United States

The U.S. Census Bureau Adopts Differential Privacy

John M. Abowd, U.S. Census Bureau

Publication Date

8-2018

Abstract

The U.S. Census Bureau announced, via its Scientific Advisory Comm that it would protect the publications of the 2018 End-to-End Census (E2E) using differential privacy. The E2E test is a dress rehearsal for 2020 Census, the constitutionally mandated enumeration of the popul used to reapportion the House of Representatives and redraw every legislative district in the country. Systems that perform successfully

About Epsilon and Delta

- Does higher delta mean better privacy?
- Does lower epsilon mean better privacy?

Randomized Response

- Q: Have you ever broken the law?
- A: Yes / No
- Randomize the response

Randomized Response Cntd

- Flip a coin
- If it is a head, then report truthfully
- Else, flip a second coin responds "Yes" if Head , "No" if Tail

Randomized Response Cntd

- Claim Randomized Response is (In3,0) DP
- Proof <u>Pr[Response=YES|Truth=YES]</u>

Pr[Response=YES|Truth=NO]

=<u>3/4</u> 1/4

=Pr[Response=NO|Truth=NO]

Pr[Response=NO|Truth=YES]

= 3

Sensitivity

$\Delta f = \max_{D1,D2} ||f(D_1) - f(D_2)||_1$

Measures how much a single record can affect the output

Sensitivity Cntd

- Counting Queries
- Number of people in the database satisfying a predicate P
- Sensitivity = 1
- Sum Query
- Find the sum of the ages of the people in the database where Age [1,100]
- Sensitivity = 100
- Histogram Query
- Output the Age histogram
- Sensitivity = 1

Laplace Distribution

- Double exponentian
- Two parameters μ and b
- PDF(x)= $\frac{1}{2b}$ exp(|x- μ |)
- Variance = $2b^2$
- $Y \sim Lap(b)$, $Pr[Y \ge bt] = exp(-t)$

Laplace Mechanism

Given $f: D \rightarrow Rk$, a ϵ – differentially private mechanism \mathcal{M} publishes

$$f(D) + [Lap(\frac{\Delta f}{\epsilon})]^k$$

Examples

Linear Query

- How many people with Age in [40,50] who watch Powerpuff Girls?
- Sensitivity = 1
- Add noise from $Lap(\frac{1}{\epsilon})$

Group Privacy

Thm: Any (ε, 0) – DP algorithm A is also (kε, 0) – DP for groups of size k, i.e., for all

$$\begin{split} ||\mathsf{D}_1 \text{-} \mathsf{D}_2|| &\leq k \\ \mathsf{D}_1, \mathsf{D}_2 \in \mathbb{N}^{|\mathsf{X}|} \end{split}$$

```
And for all S \subseteq Range(\mathcal{A})
```

 $Prob(S \in \mathcal{A}(D_1)) \leq e^{k\varepsilon}Prob(S \in \mathcal{A}(D_2))$

Post Processing

• Thm: Let $\mathcal{A}: \mathbb{N}^{|X|} \to \mathbb{R}$ be a ε – DP algorithm. Let $f: \mathbb{R} \to \mathbb{R}'$ be a randomized mapping. Then $f \circ \mathcal{A}$ also satisfies ε – DP.

Composition

Thm- For $i \in [k]$, let $\mathcal{A}_i \colon \mathbb{N}^{|X|} \to \mathbb{R}_i$ be $\varepsilon_i - \mathsf{DP}$. Then the mechanism $(\mathcal{A}_1(\mathsf{D}), \dots, \mathcal{A}_k(\mathsf{D}))$ is $\sum_i \varepsilon_i - \mathsf{DP}$.

"Advanced" version available too