
CS642:
Computer Security

University of Wisconsin CS 642

More Virtualization

Topics

• Reset/Randomization problems
• Side channels
• Leaked secrets

What is different about virtual
machines

• New operations not formerly possible
– Snapshot/restore same state multiple times

• Changing assumptions
– Randomness of interrupts

• Multi-tenancy
– Sharing hardware with your enemies

Virtual Machine Management

• Snapshots
– Volume snapshot / checkpoint
• persistent storage of VM
• must boot from storage when resuming snapshot

– Full snapshot
• persistent storage and ephemeral storage (memory,

register states, caches, etc.)
• start/resume in between (essentially) arbitrary

instructions
• VM image is a file that stores a snapshot

Uses for Secure Random
Numbers

Cryptography
• Keys
• Nonces, initial values (IVs),

salts

System Security
• TCP Initial Sequence

Numbers (ISNs)
• ASLR
• Stack Canaries

Where can we get secure
random numbers?

Every OS provides a high-quality RNG

OSX/Linux:
cat /dev/urandom

Operating System Random
Number Generators

Random Numbers
Statistically Uniform

Hard to predict

RNGSystem Events
Keyboard Clicks

Mouse Movements
Hard Disk Event
Network Packets
Other Interrupts

Random NumbersRNGSystem Events

Linux RNG

Input
Pool

Random
Pool

URandom
Pool

Interrupt
Pool

/dev/random

/dev/urandom

interrupt events

disk events
keyboard events

mouse events
hardware RNGs

Cryptographic hash

Linux /dev/(u)random:

Random NumbersRNGSystem Events

RNG Failures
Predictable Output
Repeated Output
Outputs from a small range (not-statistically uniform)

Broken Windows RNG: [DGP 2007]
Broken Linux RNG: [GPR 2008], [LRSV 2012], [DPRVW 2013], [EZJSR 2014]
Factorable RSA Keys: [HDWH 2012]
Taiwan National IDs: [BCCHLS 2013]

RNG Failures

Virtual Machine
Snapshots

Snapshot

Resumption

disk

Security Problems with
VM Resets

VM Reset Vulnerabilities [Ristenpart, Yilek 2010] Use key

Use key

Snapshot

App
starts

Read
/dev/urandom

Initialization

Derives key

Firefox and Apache reused random values for TLS
Attacker can read previous TLS sessions, recover private

keys from Apache

Linux RNG after VM Reset

Experiment:
• Boot VM in Xen or VMware
• Capture snapshot
• Resume from snapshot, read from /dev/urandom

Read RNG

Snapshot

disk Read RNG

Repeat: 8 distinct snapshots
20 resumptions/snapshot

Not-So-Random Numbers in Virtualized Linux
[Everspaugh, et al, 2014]

/dev/urandom outputs
after resumption

21B8BEE4
9D27FB83
6CD124A6
E8734F71
111D337C
1E6DD331
8CC97112
2A2FA7DB
DBBF058C
26C334E7
F17D2D20
CC10232E
...

Reset 1

21B8BEE4
9D27FB83
6CD124A6
E8734F71
111D337C
1E6DD331
8CC97112
2A2FA7DB
DBBF058C
26C334E7
F17D2D20
CC10232E
...

Reset 2

21B8BEE4
9D27FB83
6CD124A6
E8734F71
111D337C
1E6DD331
8CC97112
2A2FA7DB
DBBF058C
26C334E7
45C78AE0
E678DBB2
...

Reset 3

Linux RNG is not reset secure:
7/8 snapshots produce mostly identical outputs

Reset insecurity and
applications

Generate RSA key on resumption:
openssl genrsa

30 snapshots; 2 resets/snapshot (ASLR Off)
• 27 trials produced identical private keys
• 3 trials produced unique private keys

Why does this happen?

Input
Pool

Random
Pool

URandom
Pool

Interrupt
Pool

/dev/random

/dev/urandom

Linux /dev/(u)random

interrupts

disk events

if (entropy estimate >= 64)

if (entropy estimate >= 192)

if (count > 64 or
elapsed time > 1s)

Buffering and thresholds prevent new inputs from impacting outputs

What about other
platforms?

FreeBSD

Microsoft Windows 7

/dev/random produces identical output stream
Up to 100 seconds after resumption

Produces repeated outputs indefinitely
rand_s (stdlib)
CryptGenRandom (Win32)
RngCryptoServices (.NET)

Cloud providers

Cloud computing

Popular customers

Who can be a customer?
We call these "public clouds"

Cloud Services

VMs
Infrastructure-as-
a-service

Storage

Web Cache/TLS
Termination

A simplified model of public cloud computing

Owned/operated
by cloud provider

User A

User B

virtual machines (VMs)

virtual machines (VMs)

Users run Virtual Machines (VMs) on cloud provider’s infrastructure

Virtual
Machine
Manager

Virtual Machine Manager (VMM)
manages physical server resources for VMs

To the VM should look like dedicated server

Multitenancy (users share physical resources)

Trust models in public cloud computing

User B

Users must trust third-party provider to

User A

not spy on running VMs / data

secure infrastructure from external attackers

secure infrastructure from internal attackers

A new threat model:

User A

Bad guy

Attacker identifies one or more victims VMs in cloud

2) Launch attacks using physical proximity

1) Achieve advantageous placement via launching of VM instances

Exploit VMM vulnerability Side-channel attackDoS

Checking for co-residence

Anatomy of attack

check that VM is on same server as target
- network-based co-residence checks
- efficacy confirmed by covert channels

Placement
vulnerability:
attackers can
knowingly
achieve
co-residence
with targetAchieving co-residence

brute forcing placement
instance flooding after target launches

Location-based attacks
side-channels, DoS, escape-from-VM

Violating isolation

• Covert channels between VMs
circumvent access controls
– Bugs in VMM
– Side-effects of resource usage

Hardware

OS1

P1 P2

Hypervisor

OS2

P1 P2

Violating isolation

• Covert channels between VMs
circumvent access controls
– Bugs in VMM
– Side-effects of resource usage

• Degradation-of-Service attacks
– Guests might maliciously contend

for resources
– Xen scheduler vulnerability

Hardware

Hypervisor

OS2

P1 P2

OS1

P1 P2

Measuring Resource Contention

• Contention for the same resource

25

0

100

200

300

400

500

600

CPU Net Disk Memory Cache

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n
(%

) Local Xen Testbed
Machine Intel Xeon E5430,

2.66 Ghz

Packages 2, 2 cores per
package

LLC Size 6MB per package

Violating isolation
• Covert channels between VMs

circumvent access controls
– Bugs in VMM
– Side-effects of resource usage

• Degradation-of-Service attacks
– Guests might maliciously contend

for resources
– Xen scheduler vulnerability

• Side channels
– Spy on other guest via shared

resources

Hardware

Hypervisor

OS2

P1 P2

OS1

P1 P2

Cross-VM side channels using CPU cache contention

Attacker VM

Victim VM

Main
memory

CPU data cache

1) Read in a large array (fill CPU cache with attacker data)

2) Busy loop (allow victim to run)

3) Measure time to read large array (the load measurement)

Cache-based cross-VM load measurement on EC2

Repeated HTTP get requests

Performs cache load measurements

Running Apache server

3 pairs of instances, 2 pairs co-resident and 1 not
100 cache load measurements during HTTP gets (1024 byte page) and with no HTTP gets

[Hey, You, Get Off of my Cloud, 2009, Ristenpart, et al.]

Square-and-Multiply
/* y = xe mod N , from libgcrypt*/
Modular Exponentiation (x, e, N):

let en … e1 be the bits of e
y ← 1
for ei in {en …e1}

y ← Square(y) (S)
y ← Reduce(y, N) (R)
if ei = 1 then

y ← Multi(y, x) (M)
y ← Reduce(y, N) (R)

ei = 1 → SRMR
ei = 0 → SR

Control flow (sequence of instructions used) leaks secret

Detecting code path
ei = 0

ei = 1: extra instruction cache lines accessed

VMM core scheduling

Virtualization (VMM)

L1
I-Cache

Attacker

VM

Victim

VM

L1
I-Cache

L1
I-Cache

L1
I-Cache

VMM core scheduler determines
the VCPU to CPU core assignment

Typical configuration:
VCPUs of different VMs will often
time-share a core, assignment
changes over time

Time-sharing a core

VictimAttacker

VM/VCPU

30ms 30ms
Time

VM/VCPU

L1
I-Cache

Idea will be to snoop on
the I-cache usage every
time the attacker gets
to run

Prime-Probe Protocol

TimePROBERuns square opPRIME

Cache Set
4-way set associative

L1 I-Cache

Vector of cache set
timings, biased by
cache usage of victim

Prime-Probe Protocol

TimePROBERuns multiply opPRIME

Cache Set
4-way set associative

L1 I-Cache

Vector of cache set
timings, biased by
cache usage of victim

Square and Multiply give different-looking timing
vectors (in the absence of noise)

Time-sharing a core

VictimAttacker

VM/VCPU

30ms 30ms
Time

VM/VCPU

L1
I-Cache

Problem:
Default scheduling
quantum is 30ms in Xen

Exponentiation for 4096-bit
modulus takes about
200ms to complete

Ideally …

1 instruction?

• Use Interrupts to preempt the victim:
• Inter-Processor interrupts (IPI)!

Time

Inter-Processor Interrupts

Victim

CPU core

Attacker
VCPU

Attacker VM

VM/VCPU

IPI
VCPU

CPU core

For(; ;) {
send_IPI();
Delay();

}

Virtualization (Xen)

Cross-VM Side Channel Probing

2.5 µs
Time

2.5 µs 2.5 µs

Outline

Cross-VM
Side Channel

Probing

Cache
Pattern

Classification

Noise
Reduction

Code-Path
Reassembly

Vectors of cache
measurements

Sequences of SVM-
classified labels

Fragments of
code path

Stage 1 Stage 2

Stage 3 Stage 4

Evaluation
• Intel Yorkfield processor
– 4 cores, 32KB L1 instruction cache

• Xen + linux + GnuPG + libgcrypt
– Xen 4.0
– Ubuntu 10.04, kernel version 2.6.32.16
– Victim runs GnuPG v.2.0.19 (latest)
– libgcrypt 1.5.0 (latest)
– ElGamal decryption, 4096 bits

Results

• Work-Conserving Scheduler
– 300,000,000 prime-probe results (6 hours)
– Over 300 key fragments
– Brute force the key in ~9800 guesses

• Non-Work-Conserving Scheduler
– 1,900,000,000 prime-probe results (45 hours)
– Over 300 key fragments
– Brute force the key in ~6600 guesses

Lessons

• But don’t rely solely on them for:
– VMM transparency
– Containment
– Strong isolation (side channels exist)

• Securing guest OS and host OS still very
important for defense-in-depth

Virtual Machine Management

• Snapshots
– Volume snapshot / checkpoint
• persistent storage of VM
• must boot from storage when resuming snapshot

– Full snapshot
• persistent storage and ephemeral storage (memory,

register states, caches, etc.)
• start/resume in between (essentially) arbitrary

instructions
• VM image is a file that stores a snapshot

“Protect Against Adware and Spyware: Users protect their PCs against adware,
spyware and other malware while browsing the Internet with Firefox in a virtual
machine.”
[http://www.vmware.com/company/news/releases/player.html]

http://www.freesoftware.com/

browser exploit

Virtual machine compromised, but not host OS

Resetting to snapshot removes malware

Clean
snapshot
of VM with
browser
running

Virtual machines and secure browsing

VM Management issues

• Reset vulnerabilities
– Reuse of randomness

• Lack of diversity
• Identity management / credentials
• Known vulnerabilities

Amazon Machine Images (AMIs)
• Users set up volume snapshots / checkpoints

that can then be run on the Elastic Compute
Cloud (EC2)

• Can be marked as public and anyone can use
your AMI

Storage service

��

�����

��	�
���
������

��	�������

���������
����

��
��	�	

��	���	

���
����
����

���	

����
����������

��
�

�
�

��	�
���
������

� ��!���"��

�������
�	

#�����
������
���$�"��
����

Figure 1: System Architecture

and bitnami for Linux). Despite these attempts, there are
cases in which the robot may fail to retrieve the correct login
information. This is the case, for example, for AMIs whose
credentials are distributed only to the image provider’s cus-
tomers by companies that make business by renting AMIs.
Hence, these type of images are outside the scope of our
evaluation.

After an AMI has been successfully instantiated by the
robot, it is tested by two di�erent scanners. The Remote
Scanner collects the list of open ports1 using the NMap tool [23],
and downloads the index page of the installed web applica-
tions. In Section 5, we explain how an attacker can use
this information as a fingerprint to identify running images.
The Local Scanner component is responsible for uploading
and running a set of tests. The test suite to be executed
is packaged together in a self-extracting archive, uploaded
to the AMI, and run on the machine with administrative
privileges. In addition, the Local Scanner also analyzes the
system for known vulnerabilities using the Nessus tool [30].
For AMIs running Microsoft Windows, the scripting of au-
tomated tasks is complicated by the limited remote adminis-
tration functionalities o�ered by the Windows environment.
In this case, we mounted the remote disk and transfered the
data using the SMB/Netbios subsystem. We then used the
psexec tool [27] to execute remote commands and invoke
the tests.

The test suite uploaded by the Local Scanner includes 24
tests grouped in 4 categories: general, network, privacy, and
security (for the complete list see Appendix A).

The general category contains tests that collect general
information about the system (e.g. the Linux distribution
name, or the Windows version), the list of running processes,
the file-system status (e.g., the mounted partitions), the list
of installed packages, and the list of loaded kernel mod-
ules. In addition to these basic tests, the general category
also contains scripts that save a copy of interesting data,
such as emails (e.g., /var/mail), log files (e.g., /var/log
and %USER\Local Settings), and installed web applications
(e.g., /var/www and HKEY_LOCAL_MACHINE\SOFTWARE).
1 Since Amazon does not allow external portscans of EC2
machines, we first established a virtual private network con-
nection to the AMI through SSH, and then scanned the ma-
chine through this tunnel.

The privacy test cases focus on finding any sensitive in-
formation that may have been forgotten by the user that
published the AMI. This includes, for example, unprotected
private keys, application history files, shell history logs, and
the content of the directory saved by the general test cases.
Another important task of this test suite is to scan the
filesystem to retrieve the contents of undeleted files.

The network test suite focuses on network-related infor-
mation, such as shared directories and the list of open sock-
ets. These lists, together with the processes bound to the
sockets, can be used to verify if the image is establishing
suspicious connections.

Finally, the security test suite consists of a number of
well-known audit tools for Windows and Linux. Some of
these tools look for the evidence of known rootkits, Tro-
jans and backdoors (e.g. Chkrootkit, RootkitHunter and
RootkitRevealer), while others specifically check for pro-
cesses and sockets that have been hidden from the user
(PsTools/PsList and unhide). In this phase, we also run
the ClamAV antivirus software (see Section 4.2) to scan for
the presence of known malware samples.

These security tests also contain checks for credentials
that have been left or forgotten on the system (e.g., database
passwords, login passwords, and SSH public keys). As al-
ready mentioned in an Amazon report published in June
2011 [15], these credentials could potentially be used as back-
doors to allows attackers to log into running AMIs.

4 Results of the AMIs Analysis

Over a period of five months, between November 2010 to
May 2011, we used our automated system to instantiate and
analyze all Amazon images available in the Europe, Asia,
US East, and US West data centers. In total, the cata-
log of these data centers contained 8,448 Linux AMIs and
1,202 Windows AMIs. Note that we were successfully able
to analyze in depth a total of 5,303 AMIs. In the remaining
cases, a number of technical problems prevented our tool to
successfully complete the analysis. For example, sometimes
an AMI did not start because the corresponding manifest
file was missing, or corrupted. In some cases, the running
image was not responding to SSH, or Remote Desktop con-
nections. In other cases, the Amazon API failed to launch
the machine, or our robot was not able to retrieve valid login
credentials. These problems were particularly common for
Windows machines where, in 45% of the images, the Ama-
zon service was not able to provide us with a valid username
and password to login into the machine. Nevertheless, we
believe that a successful analysis of over 5,000 di�erent im-
ages represents a sample large enough to be representative
of the security and privacy status of publicly available AMIs.

Table 1 shows a number of general statistics we collected
from the AMIs we analyzed. Our audit process took on av-
erage 77 minutes for Windows machines, and 21 minutes for
the Linux images. This large di�erence is due to two main
reasons: first, Windows machines in the Amazon cloud take
a much longer time to start, and, second, our antivirus test
was configured to analyze the entire Windows file-system,
while only focused the analysis on directories containing ex-
ecutables for the Linux machines.

In the rest of this section, we present and discuss the re-
sults of the individual test suites.

Balduzzi et al. “A Security Analysis of Amazon’s Elastic
Compute Cloud Service – Long Version –”, 2011

See also Bugiel et al., “AmazonIA: When Elasticity Snaps Back”, 2011

5,303 AMIs analyzed (Linux and Windows)

Average #/AMI Windows Linux
Audit duration 77 min 21 min
Installed packages – 416
Running Processes 32 54
Shares 3.9 0
Established sockets 2.75 2.52
Listening sockets 22 6
Users 3.8 24.8
Used disk space 1.07 GB 2.67 GB

Table 1: General Statistics

4.1 Software Vulnerabilities

The goal of this first phase of testing is to confirm the fact
that the software running on each AMIs is often out of date
and, therefore, must be immediately updated by the user
after the image is instantiated.

For this purpose, we decided to run Nessus [30], an au-
tomated vulnerability scanner, on each AMI under test. In
order to improve the accuracy of the results, our testing
system provided Nessus with the image login credentials, so
that the tool was able to perform a more precise local scan.
In addition, to further reduce the false positives, the vulner-
ability scanner was automatically configured to run only the
tests corresponding to the actual software installed on the
machine. Nessus classifies each vulnerability with a sever-
ity level ranging from 0 to 3. Since we were not interested
in analyzing each single vulnerability, but just in assessing
the general security level of the software that was installed,
we only considered vulnerabilities with the highest severity
(e.g., critical vulnerabilities such as remote code execution).

We also looked at the most common vulnerabilities that
a�ect Windows and Linux AMIs. These results are detailed
in Appendix B.

From our analysis, 98% of Windows AMIs and 58% of
Linux AMIs contain software with critical vulnerabilities.
This observation was not typically restricted to a single ap-
plication but often involved multiple services: an average of
46 for Windows and 11 for Linux images (the overall dis-
tribution is reported in Figure 2). On a broader scale, we
observed that a large number of images come with software
that is more than two years old. Our findings empirically
demonstrate that renting and using an AMI without any
adequate security assessment poses a real security risk for
users. To further prove this point, in Section 4.2, we describe
how one of the machines we were testing was probably com-
promised by an Internet malware in the short time that we
were running our experiments.

4.2 Security Risks

Malware

As part of our tests, we used ClamAV [8], an open source an-
tivirus engine, to analyze the filesystem on the target AMI.
ClamAV contains about 850,000 signatures to identify dif-
ferent types of known malware instances such as viruses,
worms, spyware, and trojans. Since most of the existing
malware targets the Windows operating systems, we ana-
lyzed the complete file-system tree of Windows AMIs, while
we limited the coverage for Linux AMIs to common binary
directories (e.g. /usr/bin, /bin, and /sbin). As a conse-
quence, the scan time took on average of 40 minutes for a

�

�

�

�

��

��

��

��

��

��

��

�	

��

��

��

��

��

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

	�

��

��

��

���

��	

���

�

�

��

��

��

��

��

���	�
������������

�
��

	�
�
�

��

�

�

�

�

��

��

��

��

��

��

��

�	

��

��

��

��

��

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

	�

��

��

��

���

��	

���

�

�

��

��

��

��

��

���	�
������������

�
��

	�
�
�

��

� � �� �� �� �� ��
�
� �� �� �� �� �� 	� �� �� ���

 �� �� �� �	 �

�
� �� �	 �
 �� �� 	� 		 �
 ���

�

��

���

���

���

���

���

���

���	�
������������

�
��

	�
�
�

��

Figure 2: Distribution AMIs / Vulnerabilites (Win-
dows and Linux)

Windows installation, and less then a minute for a Linux
one.
In our malware analysis, we discovered two infected AMIs,

both Windows-based. The first machine was infected with
a Trojan-Spy malware (variant 50112). This trojan has a
wide range of capabilities, including performing key logging,
monitoring processes on the computer, and stealing data
from files saved on the machine. By manually analyzing
this machine, we found that it was hosting di�erent types of
suspicious content such as Trojan.Firepass, a tool to de-
crypt and recover the passwords stored by Firefox. The sec-
ond infected machine contained variant 173287 of the Tro-
jan.Agent malware. This malware allows a malicious user
to spy on the browsing habits of users, modify Internet Ex-
plorer settings, and download other malicious content.
While we were able to manually confirm the first case,

we were unable to further analyze the second infected ma-
chine. In fact, after we rented it again for a manual analysis
a few hours after the automated test, the infected files did
not existed anymore. Hence, we believe that the AMI was
most probably compromised by an automatically propagat-
ing malware during the time that we were executing our
tests. In fact, the software vulnerability analysis showed
that di�erent services running on the machine su�ered from
known, remotely exploitable, vulnerabilities.

Unsolicited connections

Unsolicited outgoing connections from an invoked instance
to an external address may be an indication for a significant
security problem. For example, such connections could be

Linux AMIs

Also: Malware found on a couple AMIs

Balduzzi et al. analysis
• Backdoors
– AMIs include SSH public keys within

authorized_keys
– Password-based backdoors

the evidence of some kind of backdoor, or the sign for a mal-
ware infection. Outgoing connections that are more stealthy
may also be used to gather information about the AMI’s us-
age, and collect IP target addresses that can then be used
to attack the instance through another built-in backdoor.

In our experiments, we observed several images that opened
connections to various web applications within and outside
of Amazon EC2. These connections were apparently check-
ing for the availability of new versions of the installed soft-
ware. Unfortunately, it is almost impossible to distinguish
between a legitimate connection (e.g., a software update)
and a connection that is used for malicious purposes.

Nevertheless, we noticed a number of suspicious connec-
tions on several Linux images: The Linux operating system
comes with a service called syslog [3] for recording various
events generated by the system (e.g., the login and logout
of users, the connection of hardware devices, or incoming
requests toward the web server).

Standard installations record these kinds of events in files
usually stored under the /var/log directory and only users
with administrative privileges are allowed to access the logs
generated by the syslog service. In our tests, we discovered
two AMIs in which the syslog daemon was configured to
send the log messages to a remote host, out of the control of
the user instantiating the image. It is clear that this setup
constitutes a privacy breach, since confidential information,
normally stored locally under a protected directory, were
sent out to a third party machine.

Backdoors and Leftover Credentials

The primary mechanism to connect to a Linux machine re-
motely is through the ssh service. When a user rents an
AMI, she is required to provide the public part of the her
ssh key that it is then stored by Amazon in the autho-
rized_keys in the home directory. The first problem with
this process is that a user who is malicious and does not
remove her public key from the image before making it pub-
lic could login into any running instance of the AMI. The
existence of these kinds of potential backdoors is known by
Amazon since the beginning of April 2011 [25].

A second problem is related to the fact that the ssh server
may also permit password-based authentication, thus pro-
viding a similar backdoor functionality if the AMI provider
does not remove her passwords from the machine. In addi-
tion, while leftover ssh keys only allow people with the corre-
sponding private key (normally the AMI image creator), to
obtain access to the instance, passwords provide a larger at-
tack vector: Anybody can extract the password hashes from
an AMI, and try to crack them using a password-cracking
tool (e.g., John the Ripper [13]).

In other words, ssh keys were probably left on the images
by mistake, and without a malicious intent. The same ap-
plies to password, with the di�erence that passwords can
also be exploited by third parties, transforming a mistake in
a serious security problem.

During our tests, we gathered these leftover credentials,
and performed an analysis to verify if a remote login would
be possible by checking the account information in /etc/passwd
and /etc/shadow, as well as the remote access configuration
of OpenSSH.

The results, summarized in Table 2, show that the prob-
lem of leftover credentials is significant: 21.8% of the scanned
AMIs contain leftover credentials that would allow a third-

East West EU Asia Total
AMIs (%) 34.8 8.4 9.8 6.3 21.8
With Passwd 67 10 22 2 101
With SSH keys 794 53 86 32 965
With Both 71 6 9 4 90
Superuser Priv. 783 57 105 26 971
User Priv. 149 12 12 12 185

Table 2: Left credentials per AMI

party to remotely login into the machine. The table also
reports the type of credentials, and lists how many of these
would grant superuser privileges (either via root, sudo or su
with a password).

4.3 Privacy Risks

The sharing of AMIs not only bears risks for the customers
who rent them, but also for the user who creates and dis-
tributes the image. In fact, if the image contains sensitive in-
formation, this would be available to anybody who is renting
the AMI. For example, an attacker can gather SSH private
keys to break into other machines, or use forgotten Amazon
Web Services (AWS) keys to start instances at the image
provider’s cost. In addition, other data sources such as the
browser and shell histories, or the database of last login at-
tempts can be used to identify and de-anonymize the AMI’s
creator.

Private keys

We developed a number of tests to search the AMIs’ file-
system for typical filenames used to store keys (e.g., id_dsa
and id_rsa for SSH keys, and pk-[0-9A-Z]*.pem and cert-
[0-9A-Z]*.pem for AWS API keys). Our system was able
to identify 67 Amazon API keys, and 56 private SSH keys
that were forgotten. The API keys are not password pro-
tected and, therefore, can immediately be used to start im-
ages on the cloud at the expense of the key’s owner. Even
though it is good security practice to protect SSH keys with
a passphrase, 54 out of 56 keys were not protected. Thus,
these keys are easily reusable by anybody who has access to
them. Although some of the keys may have been generated
specifically to install and configure the AMI, it would not
be a surprising discovery if some users reused their own per-
sonal key, or use the key on the AMI to access other hosts,
or Amazon images.
By consulting the last login attempts (i.e., by lastlog

or last commands), an attacker can easily retrieve IP ad-
dresses that likely belong to other machines owned by the
same person. Our analysis showed that 22% of the analyzed
AMIs contain information in at least one of the last login
databases. The lastb database contains the failed login at-
tempts, and therefore, can also be very helpful in retrieving
user account passwords since passwords that are mistyped or
typed too early often appear as user names in this database.
There were 187 AMIs that contained a total of 66,601 entries
in their lastb databases. Note that host names gathered
from the shell history, the SSH user configuration, and the
SSH server connection logs can also provide useful clues to
an attacker.

Browser History

Nine AMIs contained a Firefox history file (two concerning
root and seven concerning a normal user). Note that because

Balduzzi et al. analysis
• Credentials for other systems
– AWS secret keys (to control EC2 services of an

account): 67 found
– Passwords / secret keys for other systems: 56

found
Finding Total Image Remote

Amazon RDS 4 0 4

dDNS 1 0 1

SQL 7 6 1

MySql 58 45 13

WebApp 3 2 1

VNC 1 1 0

Total 74 54 20

Table 3: Credentials in history files

of ethical concerns, we did not manually inspect the contents

of the browser history. Rather, we used scripts to check

which domains had been contacted. From the automated

analysis of the history file, we discovered that one machine

was used by a person to log into the portal of a Fortune 500

company. The same user then logged into his/her personal

Google email account. Combining this kind of information,

history files can easily be used to de-anonymize, and reveal

information about the image’s creator.

Shell History

When we tested the AMI using our test suite, we inspected

common shell history files (e.g. �/.history, �/.bash_history,
�/.sh_history) that were left on the image when it was

created. We discovered that 612 AMIs (i.e., 11.54% of the

total) contained at least one single history file. We found a

total of 869 files that stored interesting information (471 for

root and 398 for generic users), and that contained 158,354

lines of command history. In these logs, we identified 74 dif-

ferent authentication credentials that were specified in the

command line, and consequently recorded on file (ref. Ta-

ble 3).

For example, the standard MySQL client allows to spec-

ify the password from the command line using the -p flag.

A similar scenario occurs when sensitive information, such

as a password or a credit card number, is transferred to a

web application using an HTTP GET request. GET re-

quests, contrary to POST submissions, are stored on the

web server’s logs. The credentials we discovered belong to

two categories: local and remote.

The credentials in the image group grant an attacker ac-

cess to a service/resource that is hosted on the AMI. In

contrast, remote credentials enable the access to a remote

target. For example, we identified remote credentials that

can be used to modify (and access) the domain name in-

formation of a dynamic DNS account. A malicious user

that obtains a DNS management password can easily change

the DNS configuration, and redirect the tra⌅c of the orig-

inal host to his own machines. In addition, we discovered

four credentials for the Amazon Relational Database Service

(RDS) [32] – a web service to set up, operate, and scale a

relational database in the Amazon cloud. We also found

credentials for local and remote web applications for di�er-

ent uses (e.g. Evergreen, GlassFish, and Vertica) and for

a database performance monitoring service. One machine

was configured with VNC, and its password was specified

from the command line. Finally, we were able to collect 13

credentials for MySQL that were used in the authentication

of remote databases.

Recovery of deleted files

In the previous sections, we discussed the types of sensitive

information that may be forgotten by the image provider.

Unfortunately, the simple solution of deleting this informa-

tion before making the image publicly available is not satis-

factory from a security point of view.

In many file systems, when a user deletes a file, the space

occupied by the file is marked as free, but the content of the

file physically remains on the media (e.g. the hard-disk).

The contents of the deleted file are definitely lost only when

this marked space is overwritten by another file. Utilities

such as shred, wipe, sfill, scrub and zerofree make data

recovery di⌅cult either by overwriting the file’s contents be-

fore the file is actually unlinked, or by overwriting all the

corresponding empty blocks in the filesystem (i.e., secure

deletion or wiping). When these security mechanisms are

not used, it is possible to use tools (e.g., extundelete and

Winundelete) to attempt to recover previously deleted files.

In the context of Amazon EC2, in order to publish a cus-

tom image on the Amazon Cloud, a user has to prepare her

image using a predefined procedure called bundling. This

procedure involves three main steps: Create an image from

a loopback device or a mounted filesystem, compress and en-

crypt the image, and finally, split it into manageable parts

so that it can be uploaded to the S3 storage.

The first step of this procedure changes across di�erent

bundling methods adopted by the user (ref. Table 4). For

example, the ec2-bundle-image method is used to bundle

an image that was prepared in a loopback file. In this case,

the tool transfers the data to the image using a block level

operation (e.g. similar to the dd utility). In contrast, if the

user wishes to bundle a running system, she can choose the

ec2-bundle-vol tool that creates the image by recursively

copying files from the live filesystem (e.g., using rsync). In

this case, the bundle system works at the file level.

Any filesystem image created with a block-level tool will

also contain blocks marked as free, and thus may contain

parts of deleted files. As a result, out of the four bundling

methods provided by Amazon, three are prone to a file un-

deletion attack.

To show that our concerns have practical security impli-

cations, we randomly selected 1,100 Linux AMIs in four dif-

ferent regions (US East/West, Europe and Asia). We then

used the extundelete data recovery utility [5] to analyze

the filesystem, and recover the contents of all deleted files.

In our experiment, we were able to recover files for 98% of

the AMIs (from a minimum of 6 to a maximum of more

than 40,000 files per AMI). In total, we were able to retrieve

28.3GB of data (i.e., an average of 24MB per AMI).

We collected statistics on the type (Table 5) of the un-

deleted files by remotely running the file command. Note

that in order to protect the privacy of Amazon users, we

did not access the contents of the recovered data, and we

also did not transfer this data out of the vulnerable AMI.

The table shows a breakdown of the types of sensitive data

we were able to retrieve (e.g., PDFs, O⌅ce documents, pri-

vate keys). Again, note that the Amazon AWS keys are not

password-protected. That is, an attacker that gains access

to these keys is then able to instantiate Amazon resources

(e.g. S3 and AWS services) at the victim’s expense (i.e., the

costs are charged to the victim’s credit card).

In our analysis, we verified if the same problem exists for

Windows AMIs. We analyzed some images using the Win-

Balduzzi et al. analysis
• Deleted files
– One AMI creation method does block-level

copying

Method Level Vulnerable

ec2-bundle-vol File-System No

ec2-bundle-image Block Yes

From AMI snapshot Block Yes

From VMWare Block Yes

Table 4: Tested Bundle Methods

Type #

Home files (/home, /root) 33,011

Images (min. 800x600) 1,085

Microsoft O⌅ce documents 336

Amazon AWS certificates and access keys 293

SSH private keys 232

PGP/GPG private keys 151

PDF documents 141

Password file (/etc/shadow) 106

Table 5: Recovered data from deleted files

Undelete tool [31], and were able to recover deleted files in

all cases. Interestingly, we were also able to undeleted 8,996

files from an o⌅cial image that was published by Amazon

AWS itself.

5 Machine Fingerprinting
In the previous sections, we presented a number of experi-

ments we conducted to assess the security and privacy issues

involved in the release and use of public AMIs. The results

of our experiments showed that a large number of factors

must be considered when making sure that a virtual ma-

chine image can be operated securely (e.g., services must be

patched and information must be sanitized).

A number of the issues we described in the previous sec-

tions could potentially be exploited by an attacker (or a ma-

licious image provider) to obtain unauthorized remote access

to any running machine that adopted a certain vulnerable

AMI. However, finding the right target is not necessarily an

easy task.

For example, suppose that a malicious provider distributes

an image containing his own ssh key, so that he can later lo-

gin into the virtual machines as root. Unfortunately, unless

he also adds some kind of mechanism to “call back home”

and notify him of the IP address of every new instance, he

would have to brute force all the Amazon IP space to try

to find a running machine on which he can use his creden-

tials. To avoid this problem, in this section we explore the

feasibility of automatically

In order to explore the feasibility, from an attacker point

of view, of automatically matching a running instance back

to the corresponding AMI, we started our experiment by

querying di�erent public IP registries (ARIN, RIPE, and

LAPNIC) to obtained a list of all IPs belonging to the Ama-

zon EC2 service for the regions US East/West, Europe and

Asia. The result was a set of sub-networks that comprises

653,401 distinct IPs that are potentially associated with run-

ning images.

For each IP, we queried the status of thirty commonly used

ports (i.e., using the NMap tool), and compared the results

with the information extracted from the AMI analysis. We

only queried a limited number of ports because our aim was

to be as non-intrusive as possible. (i.e., see Section 6 for

a detailed discussion of ethical considerations, precautions,

Candidates

Approach Instances 1 10 50

SSH 130,580 2,149 8,869 11,762

Services 203,563 7,017 30,345 63,512

Web 125,554 5,548 31,651 54,918

Table 6: Discovered Instances

and collaboration with Amazon). For the same reason, we

configured NMap to only send a few packets per second to

prevent any flooding, or denial of service e�ect.

Our scan detected 233,228 running instances. This num-

ber may not reflect the exact number of instances there were

indeed running. That is, there may have been virtual ma-

chines that might have been blocking all ports.

We adopted three di�erent approaches to match and map

a running instance to a set of possible AMIs. The three

methods are based on the comparison of the SSH keys, ver-

sions of network services, and web-application signatures.

Table 6 depicts the results obtained by applying the three

techniques. The first column shows the number of running

instances to which a certain technique could be applied (e.g.,

the number of instances where we were able to grab the SSH

banner). The last two columns report the number of running

machines for which a certain matching approach was able to

reduce the set of candidate AMIs to either 10 or 50 per

matched instance. Since 50 possibilities is a number that

is small enough to be easily brute-forced manually, we can

conclude that it is possible to identify the AMI used in more

than half of the running machines.

SSH matching Every SSH server has a host key that is

used to identify itself. The public part of this key is used

to verify the authenticity of the server. Therefore, this key

is disclosed to the clients. In the EC2, the host key of an

image needs to be regenerated upon instantiation of an AMI

for two reasons: First, a host key that is shared among sev-

eral machines makes these servers vulnerable to man-in-the-

middle attacks (i.e., especially when the private host key is

freely accessible). Second, an unaltered host key can serve

as an identifier for the AMI, and may thus convey sensitive

information about the software that is used in the instance.

This key regeneration operation is normally performed by

the cloud-init script provided by Amazon. The script

should normally be invoked at startup when the image is

first booted. However, if the image provider either forgets

or intentionally decides not to add the script to his AMI,

this important initialization procedure is not performed. In

such cases, it is very easy for an attacker to match the SSH

keys extracted from the AMIs with the ones obtained from

a simple NMap scan. As reported in Table 6, we were able

to precisely identify over 2,100 AMI instances by using this

method.

Service matching In the cases where the ssh-based iden-

tification failed, we attempted to compare the banners cap-

tured by NMap with the information extracted from the ser-

vices installed on the AMIs. In particular, we compared the

service name, the service version, and (optionally) the ad-

ditional information fields returned by the thirty common

ports we scanned in our experiment.

The service-matching approach is not as precise as the ssh-

based identification. Hence, it may produce false positives if

Response

“They told me it’s not their concern, they just provide

computing power,” Balduzzi says. “It’s like if you upload naked

pictures to Facebook. It’s not a good practice, but it’s not

Facebook’s problem.”

http://www.forbes.com/sites/andygreenberg/2011/11/08/

researchers-find-amazon-cloud-servers-teeming-with-backdoors-and-other-peoples-data/

• Amazon notified customers with vulnerable AMIs

• Made private AMIs of non-responsive customers

• New tutorials for bundling systems

• Working on undelete issues…

http://www.forbes.com/sites/andygreenberg/2011/11/08/

Lessons

• New software management practices needed
with VM snapshots

• Discussion:
– New tool support?
– How much worse is this than non-cloud server

deployments?

