More Virtualization

CS642: Computer Security

University of Wisconsin CS 642

Topics

- Reset/Randomization problems
- Side channels
- Leaked secrets

What is different about virtual machines

- New operations not formerly possible
 Snapshot/restore same state *multiple times*
- Changing assumptions
 - Randomness of interrupts
- Multi-tenancy
 - Sharing hardware with your enemies

Virtual Machine Management

- Snapshots
 - Volume snapshot / checkpoint
 - persistent storage of VM
 - must boot from storage when resuming snapshot
 - Full snapshot
 - persistent storage and ephemeral storage (memory, register states, caches, etc.)
 - start/resume in between (essentially) arbitrary instructions
- VM image is a file that stores a snapshot

Uses for Secure Random Numbers

Cryptography

- Keys
- Nonces, initial values (IVs), salts

System Security

- TCP Initial Sequence Numbers (ISNs)
- ASLR
- Stack Canaries

Where can we get secure random numbers?

Every OS provides a high-quality RNG

OSX/Linux: cat /dev/urandom

Operating System Random Number Generators

System Events

Keyboard Clicks Mouse Movements Hard Disk Event Network Packets Other Interrupts

Random Numbers

Statistically Uniform Hard to predict

Linux RNG

RNG Failures

RNG Failures

Predictable Output Repeated Output Outputs from a small range (not-statistically uniform)

Broken Windows RNG: [DGP 2007] Broken Linux RNG: [GPR 2008], [LRSV 2012], [DPRVW 2013], [EZJSR 2014] Factorable RSA Keys: [HDWH 2012] Taiwan National IDs: [BCCHLS 2013]

Virtual Machine Snapshots

vmware[®]

Security Problems with VM Resets

Firefox and Apache reused random values for TLS Attacker can read previous TLS sessions, recover private keys from Apache

Linux RNG after VM Reset

Not-So-Random Numbers in Virtualized Linux [Everspaugh, et al, 2014]

Experiment:

- Boot VM in Xen or VMware
- Capture snapshot
- Resume from snapshot, read from /dev/urandom

Repeat: 8 distinct snapshots 20 resumptions/snapshot

/dev/urandom outputs after resumption

Linux RNG is *not* reset secure: 7/8 snapshots produce mostly identical outputs

1E6DD331	1E6DD331	1E6DD331
8CC97112	8CC97112	8CC97112
2A2FA7DB	2A2FA7DB	2A2FA7DB
DBBF058C	DBBF058C	DBBF058C
26C334E7	26C334E7	26C334E7
F17D2D20	F17D2D20	45C78AE0
CC10232E	CC10232E	E678DBB2

Reset insecurity and applications

Generate RSA key on resumption: openssl genrsa

30 snapshots; 2 resets/snapshot (ASLR Off)

- 27 trials produced identical private keys
- 3 trials produced unique private keys

Why does this happen?

Buffering and thresholds prevent new inputs from impacting outputs

Linux /dev/(u)random

What about other platforms?

/dev/random produces identical output stream Up to 100 seconds after resumption

Microsoft Windows 7

Produces repeated outputs indefinitely rand_s (stdlib) CryptGenRandom (Win32) RngCryptoServices (.NET)

Cloud computing

Popular customers

Who can be a customer? We call these "public clouds"

Internet of Things AWS IoT Connect Devices to the Cloud

Game Development

GameLift Deploy and Scale Session-based Multiplayer Games

Mobile Services

- Build, Test, and Monitor Mobile Apps
- Cognito User Identity and App Data Synchronization

Device Farm
 Test Android, iOS, and Web Apps on Real Devices
 in the Cloud

Collect, View and Export App Analytics

Push Notification Service

Application Services

HI Gateway Build, Deploy and Manage APIs

AppStream Low Latency Application Streaming

CloudSearch Managed Search Service

Elastic Transcoder Easy-to-Use Scalable Media Transcoding

SES Email Sending and Receiving Service

SQS Message Queue Service

Workflow Service for Coordinating Application Components

Enterprise Applications

Besktops in the Cloud

Cloud Services

A simplified model of public cloud computing

Users run Virtual Machines (VMs) on cloud provider's infrastructure

Trust models in public cloud computing

not spy on running VMs / data

secure infrastructure from external attackers

secure infrastructure from internal attackers

A new threat model:

Attacker identifies one or more victims VMs in cloud

- 1) Achieve advantageous placement via launching of VM instances
- 2) Launch attacks using physical proximity
 - Exploit VMM vulnerabilityDoSSide-channel attack

Anatomy of attack

Checking for co-residence

check that VM is on same server as targetnetwork-based co-residence checksefficacy confirmed by covert channels

Achieving co-residence

brute forcing placement instance flooding after target launches

Location-based attacks

side-channels, DoS, escape-from-VM

Placement vulnerability: attackers can knowingly achieve co-residence with target

Violating isolation

- Covert channels between VMs circumvent access controls
 - Bugs in VMM
 - Side-effects of resource usage

Violating isolation

- Covert channels between VMs circumvent access controls
 - Bugs in VMM
 - Side-effects of resource usage
- Degradation-of-Service attacks
 - Guests might maliciously contend for resources
 - Xen scheduler vulnerability

P1	P2	P1	1 P2	
0	OS1		S2	
Hypervisor				
Hardware				

Measuring Resource Contention

• Contention for the same resource

Violating isolation

- Covert channels between VMs circumvent access controls
 - Bugs in VMM
 - Side-effects of resource usage
- Degradation-of-Service attacks
 - Guests might maliciously contend for resources
 - Xen scheduler vulnerability
- Side channels
 - Spy on other guest via shared resources

Cross-VM side channels using CPU cache contention

- 1) Read in a large array (fill CPU cache with attacker data)
- 2) Busy loop (allow victim to run)
- 3) Measure time to read large array (the load measurement)

Cache-based cross-VM load measurement on EC2

3 pairs of instances, 2 pairs co-resident and 1 not 100 cache load measurements during **HTTP gets** (1024 byte page) and with **no HTTP gets**

[Hey, You, Get Off of my Cloud, 2009, Ristenpart, et al.]

Square-and-Multiply

 $/* y = x^{e} \mod N$, from **libgcrypt***/ **Modular Exponentiation** (x, e, N): let $e_n \dots e_1$ be the bits of e $e_i = 1 \rightarrow SRMR$ $e_i = 0 \rightarrow SR$ $y \leftarrow 1$ for e_i in $\{e_n \dots e_1\}$ $y \leftarrow Square(y)$ **(S)** $y \leftarrow \text{Reduce}(y, N)$ **(R)** if $e_i = 1$ then $y \leftarrow Multi(y, x)$ (M) $y \leftarrow Reduce(y, N)$ **(R)**

Control flow (sequence of instructions used) leaks secret

Detecting code path

 $e_{i} = 0$

e_i = 1: extra instruction cache lines accessed

VMM core scheduling

VMM core scheduler determines the VCPU to CPU core assignment

Typical configuration: VCPUs of different VMs will often time-share a core, assignment changes over time

I-Cache

Time-sharing a core

Prime-Probe Protocol

Prime-Probe Protocol

Time-sharing a core

Problem: Default scheduling quantum is 30ms in Xen

Exponentiation for 4096-bit modulus takes about 200ms to complete

Time

- Use Interrupts to preempt the victim:
 - Inter-Processor interrupts (IPI)!

Inter-Processor Interrupts

Attacker VM

Cross-VM Side Channel Probing

Outline

Evaluation

• Intel Yorkfield processor

- 4 cores, 32KB L1 instruction cache

- Xen + linux + GnuPG + libgcrypt
 - Xen 4.0
 - Ubuntu 10.04, kernel version 2.6.32.16
 - Victim runs GnuPG v.2.0.19 (latest)
 - libgcrypt 1.5.0 (latest)
 - ElGamal decryption, 4096 bits

Results

- Work-Conserving Scheduler
 - 300,000,000 prime-probe results (6 hours)
 - Over 300 key fragments
 - Brute force the key in ~9800 guesses
- Non-Work-Conserving Scheduler
 - 1,900,000,000 prime-probe results (45 hours)
 - Over 300 key fragments
 - Brute force the key in ~6600 guesses

Lessons

- But don't rely solely on them for:
 - VMM transparency
 - Containment
 - Strong isolation (side channels exist)
- Securing guest OS and host OS still very important for defense-in-depth

Virtual Machine Management

- Snapshots
 - Volume snapshot / checkpoint
 - persistent storage of VM
 - must boot from storage when resuming snapshot
 - Full snapshot
 - persistent storage and ephemeral storage (memory, register states, caches, etc.)
 - start/resume in between (essentially) arbitrary instructions
- VM image is a file that stores a snapshot

Virtual machines and secure browsing

"Protect Against Adware and Spyware: Users protect their PCs against adware, spyware and other malware while browsing the Internet with Firefox in a virtual machine." mware[.]

[http://www.vmware.com/company/news/releases/player.html]

VM Management issues

• Reset vulnerabilities

Reuse of randomness

- Lack of diversity
- Identity management / credentials
- Known vulnerabilities

Amazon Machine Images (AMIs)

- Users set up volume snapshots / checkpoints that can then be run on the Elastic Compute Cloud (EC2)
- Can be marked as public and anyone can use your AMI

Balduzzi et al. "A Security Analysis of Amazon's Elastic Compute Cloud Service – Long Version –", 2011

See also Bugiel et al., "AmazonIA: When Elasticity Snaps Back", 2011

Also: Malware found on a couple AMIs

Balduzzi et al. analysis

- Backdoors
 - AMIs include SSH public keys within authorized_keys
 - Password-based backdoors

	East	West	EU	Asia	Total
AMIs $(\%)$	34.8	8.4	9.8	6.3	21.8
With Passwd	67	10	22	2	101
With SSH keys	794	53	86	32	965
With Both	71	6	9	4	90
Superuser Priv.	783	57	105	26	971
User Priv.	149	12	12	12	185

Table 2: Left credentials per AMI

Balduzzi et al. analysis

- Credentials for other systems
 - AWS secret keys (to control EC2 services of an account): 67 found
 - Passwords / secret keys for other systems: 56 found

Finding	Total	Image	Remote
Amazon RDS	4	0	4
dDNS	1	0	1
SQL	7	6	1
MySql	58	45	13
WebApp	3	2	1
VNC	1	1	0
Total	74	54	20

 Table 3: Credentials in history files

Balduzzi et al. analysis

- Deleted files
 - One AMI creation method does block-level copying

Type	#
Home files (/home, /root)	$33,\!011$
Images (min. 800×600)	$1,\!085$
Microsoft Office documents	336
Amazon AWS certificates and access keys	293
SSH private keys	232
PGP/GPG private keys	151
PDF documents	141
Password file (/etc/shadow)	106

 Table 5: Recovered data from deleted files

Response

"They told me it's not their concern, they just provide computing power," Balduzzi says. "It's like if you upload naked pictures to Facebook. It's not a good practice, but it's not Facebook's problem."

http://www.forbes.com/sites/andygreenberg/2011/11/08/

researchers-find-amazon-cloud-servers-teeming-with-backdoors-and-other-peoples-data/

- Amazon notified customers with vulnerable AMIs
- Made private AMIs of non-responsive customers
- New tutorials for bundling systems
- Working on undelete issues...

Lessons

- New software management practices needed with VM snapshots
- Discussion:
 - New tool support?
 - How much worse is this than non-cloud server deployments?