
CS642:
Computer Security

University of Wisconsin CS 642

IP security

University of Wisconsin CS 642

Moving up the network stack

DoS attacks, Networking telescopes

Fragmentation

A closer look at fragmentation

• Every link has a “Maximum Transmission Unit” (MTU)
– largest number of bits it can carry as one unit

• A router can split a packet into multiple “fragments� if
the packet size exceeds the link’s MTU

• Must reassemble to recover original packet

Example of fragmentation

• A 4000 byte packet crosses a link w/
MTU=1500B

4000B 1500B …

Example of fragmentation

20

4000

3980

20 1480

1500

20 1200

1220

20 1300

1320

• A 4000 byte packet crosses a link w/ MTU=1500B

IP header

Why reassemble?

20

4000

3980

20 1480

1500

20 1200

1220

20 1300

1320

IP header

20

TCP

TCP

TCP

HTTP

HTTP

HTTP

Must reassemble before sending the packet to the higher layers!

A few considerations

• Where to reassemble?

• Fragments can get lost

• Fragments can follow different paths

• Fragments can get fragmented again

Where should reassembly occur?
Classic case of E2E principle

• At next-hop router imposes burden on network
– complicated reassembly algorithm
– must hold onto fragments/state

• Any other router may not work
– Fragments may take different paths

• Little benefit, large cost for network reassembly

• Hence, reassembly is done at the destination

Reassembly: what fields?

• Need a way to identify fragments of the packet
à introduce an identifier

• Fragments get lost?
à need some form of sequence number or offset?

• Sequence numbers / offset
– How do I know when I have them all? (need max seq# /

flag)
– What if a fragment gets re-fragmented?

IPv4’s fragmentation fields

• Identifier: which fragments belong together

• Flags:
– Reserved: ignore
– DF: don’t fragment

• may trigger error message back to sender
–MF: more fragments coming

• Offset: portion of original payload this fragment
contains
– in 8-byte units

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

Why This Works
• Fragment without MF set (last fragment)
– Tells host which are the last bits in original payload

• All other fragments fill in holes

• Can tell when holes are filled, regardless of order
– Use offset field

• Q: why use a byte-offset for fragments rather
than numbering each fragment?
– Allows further fragmentation of fragments

Example of fragmentation (contd.)

20

4000

3980

20 1480

1500

20 1200

1220

20 1300

1320

• Packet split into 3 pieces
• Example:

Example of fragmentation, contd.

• 4000 byte packet from host 1.2.3.4 to 3.4.5.6
…

• … traverses a link with MTU 1,500 bytes
Version

4
Header
Length

5

Type of Service
0 Total Length: 4000

Identification: 56273
R/D/M
0/0/0 Fragment Offset: 0

TTL
127

Protocol
6 Checksum: 44019

Source Address: 1.2.3.4

Destination Address: 3.4.5.6

(3980 more bytes of payload here)

Example of fragmentation, contd.

• Datagram split into 3 pieces. Possible first
piece:

Version
4

Header
Length

5

Type of Service
0

Total Length: 1500

Identification: 56273
R/D/M
0/0/1 Fragment Offset: 0

TTL
127

Protocol
6 Checksum: xxx

Source Address: 1.2.3.4

Destination Address: 3.4.5.6

Example of fragmentation, contd.

• Possible second piece: Frag#1 covered
1480bytes

Version
4

Header
Length

5

Type of Service
0

Total Length: 1220

Identification: 56273
R/D/M
0/0/1

Fragment Offset: 185
(185 * 8 = 1480)

TTL
127

Protocol
6 Checksum: yyy

Source Address: 1.2.3.4

Destination Address: 3.4.5.6

Example of fragmentation, contd.

• Possible third piece: 1480+1200 = 2680

Version
4

Header
Length

5

Type of Service
0

Total Length: 1320

Identification: 56273
R/D/M
0/0/0

Fragment Offset: 335
(335 * 8 = 2680)

TTL
127

Protocol
6 Checksum: zzz

Source Address: 1.2.3.4

Destination Address: 3.4.5.6

Security Implications of Fragmentation?

• Allows evasion of network
monitoring/enforcement

• E.g., split an attack across multiple fragments
– Packet inspection won’t match a “signature”

• Monitor must remember previous fragments
– But that costs state, which is another vector of attack

Nasty-at
Offset=0

tack-bytes
Offset=8

More Fragmentation Attacks

• What if 2 overlapping fragments are inconsistent?

• How does network monitor know whether receiver
sees USERNAME NICE or USERNAME EVIL?

USERNAME
Offset=0

NICE
Offset=8

EVIL
Offset=8

Even More Fragmentation Attacks

• What happens if attacker doesn’t send all
of the fragments in a packet?

• Receiver (or firewall) winds up holding the
ones they receive for a long time
– State-holding attack

More about DoS

ISP1 ISP2

DoS is still a big problem

1.2.3.4

5.6.7.8

Backbone

ISP3

8.7.3.4

How big?

Backscatter

ISP1 ISP2

Can we measure the level of DoS attacks on Internet?
• Suppose 5.6.7.8 spoofs 8.7.3.4 when attacking 1.2.3.4
• If we can measure spurious packets at 8.7.3.4, we might

infer something about DoS at 1.2.3.4

1.2.3.4

5.6.7.8

Backbone

ISP3

8.7.3.4

Types of responses to floods
ings.

2 Background

Denial-of-service attacks consume the resources of a re-
mote host or network that would otherwise be used for
serving legitimate users. There are two principal classes
of attacks: logic attacks and flooding attacks. Attacks in
the first class, such as the “Ping-of-Death”, exploit ex-
isting software flaws to cause remote servers to crash or
substantially degrade in performance. Many of these at-
tacks can be prevented by either upgrading faulty soft-
ware or filtering particular packet sequences, but they re-
main a serious and ongoing threat. The second class,
flooding attacks, overwhelm the victim’s CPU, memory,
or network resources by sending large numbers of spu-
rious requests. Because there is typically no simple way
to distinguish the “good” requests from the “bad”, it can
be extremely difficult to defend against flooding attacks.
For the purposes of this study we will focus solely on
flooding attacks.

2.1 Attack types

There are two related consequences to a flooding attack –
the network load induced and the impact on the victim’s
CPU. To load the network, an attacker generally sends
small packets as rapidly as possible since most network
devices (both routers and NICs) are limited not by band-
width but by packet processing rate. Therefore, packets-
per-second are usually the best measure of network load
during an attack.
An attacker often simultaneously attempts to load the

victim’s CPU by requiring additional processing above
and beyond that required to receive a packet. For exam-
ple, the best known denial-of-service attack is the “SYN
flood” [6] which consists of a stream of TCP SYN pack-
ets directed to a listening TCP port at the victim. For
each such SYN packet received, the host victim must
search through existing connections and if no match is
found, allocate a new data structure for the connection.
Moreover, the number of these data structures may be
limited by the victim’s operating system. Consequently,
without additional protection, even a small SYN flood
can overwhelm a remote host. There are many similar
attacks that exploit other code vulnerabilities including
TCP ACK, NUL, RST and DATA floods, IP fragment
floods, ICMP Echo Request floods, DNS Request floods,
and so forth.

2.2 Distributed attacks

While a single host can cause significant damage by
sending packets at its maximum rate, attackers can (and

Packet sent Response from victim

TCP SYN (to open port) TCP SYN/ACK
TCP SYN (to closed port) TCP RST (ACK)
TCP ACK TCP RST (ACK)
TCP DATA TCP RST (ACK)
TCP RST no response
TCP NULL TCP RST (ACK)
ICMP ECHO Request ICMP Echo Reply
ICMP TS Request ICMP TS Reply
UDP pkt (to open port) protocol dependent
UDP pkt (to closed port) ICMP Port Unreach
... ...

Table 1: A sample of victim responses to typical attacks.

do) mount more powerful attacks by leveraging the re-
sources of multiple hosts. Typically an attacker com-
promises a set of Internet hosts (using manual or semi-
automated methods) and installs a small attack daemon
on each, producing a group of “zombie” hosts. This dae-
mon typically contains both the code for sourcing a va-
riety of attacks and some basic communications infras-
tructure to allow for remote control. Using variants of
this basic architecture an attacker can focus a coordinated
attack from thousands of zombies onto a single site.

2.3 IP spoofing

To conceal their location, thereby forestalling an effec-
tive response, attackers typically forge, or “spoof”, the IP
source address of each packet they send. Consequently,
the packets appear to the victim to be arriving from one
or more third parties. Spoofing can also be used to “re-
flect” an attack through an innocent third party. While
we do not address “reflector attacks” in this paper, we
describe them more fully in Section 3.3.

3 Basic methodology

As noted in the previous section, attackers commonly
spoof the source IP address field to conceal the loca-
tion of the attacking host. The key observation behind
our technique is that for direct denial-of-service attacks,
most programs select source addresses at random for
each packet sent. These programs include all of the most
popular distributed attacking tools: Shaft, TFN, TFN2k,
trinoo, all variants of Stacheldraht, mstream and Trin-
ity). When a spoofed packet arrives at the victim, the
victim usually sends what it believes to be an appropri-
ate response to the faked IP address (such as shown in
Table 1). Occasionally, an intermediate network device
(such as a router, load balancer, or firewall) may issue
its own reply to the attack via an ICMP message [21].

From Moore et al., “Inferring Internet Denial-of-Service Activity”

Internet telescopes

ISP1 ISP2

1.2.3.4

5.6.7.8

Backbone

ISP3

8.7.3.4
7.4.0.0/16

12.4.0.0/8

Setup some computers to watch traffic sent to darknets
• Darknet = unused routable space

0 232

2001: 400 SYN attacks per week 2008: 4425 SYN attacks per 24 hours

Received traffic to
idle machine (2017)

Preventing DoS: Akamai approach

1.2.3.4
Filtering box

Lots of SYNs

Lots of SYN/ACKs

Few ACKs

Just need a beefy box to help with filtering.
Companies pay Prolexic to do it for them

