
CS642:
Computer Security

University of Wisconsin CS 642

MACs, Passwords and
Asymmetric encryption

University of Wisconsin CS 642

Asymmetric encryption

Digital signing & public-key infrastructure

The RSA algorithm

October 11, 2016 Practical Aspects of Modern Cryptography

The Fundamental Equation

! = #$ mod (

3

October 11, 2016 Practical Aspects of Modern Cryptography

One-Way Functions

! = #$ mod (
When) is unknown, the problem is known as

the discrete logarithm and is generally
believed to be hard to solve.

4

October 11, 2016 Practical Aspects of Modern Cryptography

One-Way Trap-Door Functions

! = #$ mod (
This equation is solvable for # if the

factorization of (is known, but is believed to

be hard otherwise.

5

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Public-Key Cryptosystem

Alice Anyone

6

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Public-Key Cryptosystem

Alice
• Select two large

random primes ! & ".

Anyone

7

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Public-Key Cryptosystem

Alice
• Select two large

random primes ! & ".
• Publish the product
= !".

Anyone

8

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Public-Key Cryptosystem

Alice
• Select two large

random primes ! & ".
• Publish the product
= !".

Anyone
• To send message % to

Alice, compute & =
%' mod #.

9

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Public-Key Cryptosystem

Alice
• Select two large

random primes ! & ".
• Publish the product
= !".

Anyone
• To send message % to

Alice, compute & =
%' mod #.

• Send & and + to Alice.

10

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Public-Key Cryptosystem

Alice
• Select two large

random primes ! & ".
• Publish the product
= !".

• Use knowledge of
! & " to compute %.

Anyone
• To send message % to

Alice, compute & =
%' mod #.

• Send & and + to Alice.

11

October 11, 2016 Practical Aspects of Modern Cryptography

Some RSA Details

When ! = #$ is the product of distinct primes,

%& mod ! = %
whenever

* mod (# − 1)($ − 1) = 1 and 0 ≤ % < !.

12

October 11, 2016 Practical Aspects of Modern Cryptography

Some RSA Details

When ! = #$ is the product of distinct primes,

%& mod ! = %
whenever

* mod (# − 1)($ − 1) = 1 and 0 ≤ % < !.
Alice can easily select integers 2 and 3 such

that (2×3) mod (# − 1)($ − 1) = 1.

13

October 11, 2016 Practical Aspects of Modern Cryptography

Some RSA Details

Encryption: !(#) = #& mod *.
Decryption: + # = #, mod *.

+(!(#))
= #& mod * , mod *
= #&, mod *
= #

14

October 11, 2016 Practical Aspects of Modern Cryptography

Some RSA Details

In practice, the encryption exponent ! is
almost always fixed to be

! = 65537 = 2() + 1.

15

October 11, 2016 Practical Aspects of Modern Cryptography

Some RSA Details

In practice, the encryption exponent ! is
almost always fixed to be

! = 65537 = 2() + 1.
The decryption exponent , is then

computed as
, = (1 ÷ !) mod 3 − 1 (5 − 1).

16

Public-Key Directory

October 11, 2016 Practical Aspects of Modern Cryptography 17

Name Public Key Encryption
Alice
Bob
Carol

∶ ∶ ∶

Public-Key Directory

October 11, 2016 Practical Aspects of Modern Cryptography 18

Name Public Key Encryption
Alice
Bob
Carol

∶ ∶ ∶

(Recall that ! is commonly fixed
to be ! = 65537.)

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Signatures

19

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Signatures

An additional property

20

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Signatures

An additional property
!(#($)) = $'(mod , = $

21

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Signatures

An additional property
!(#($)) = $'(mod , = $
#(!($)) = $(' mod , = $

22

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Signatures

An additional property
!(#($)) = $'(mod , = $
#(!($)) = $(' mod , = $

Only Alice (knowing the factorization of ,)
knows !. Hence only Alice can compute
!($) = $(mod ,.

23

October 11, 2016 Practical Aspects of Modern Cryptography

RSA Signatures

An additional property
!(#($)) = $'(mod , = $
#(!($)) = $(' mod , = $

Only Alice (knowing the factorization of ,)
knows !. Hence only Alice can compute
!($) = $(mod ,.

This !($) serves as Alice’s signature on $.

24

certificates

Problem: How does a client get the public
key for a website?

facebook.com

TLS

pkfb, skfb

October 11, 2016 Practical Aspects of Modern Cryptography

Certificate Authority

“Alice’s public modulus is
!" = 331490324840…”

-- signed CA.

26

cert signing

Cert=(X,S)
Sign

skCA

SCertificate Authority

pkCA, skCA

Domain: *.facebook.com
Pubkey: 04 DB D1 77 …

X

pkCA

certificates

certificates

What does having a trusted TLS certificate prove?

–That someone paid at least $0

–Proved to an intermediate CA that they controlled a

given domain name for at least 5 minutes

–If TLS established, proves they know the corresponding

private key to the pub key in cert

What could possibly go wrong?

–Any CA secret key in chain could be compromised

–Server secret key could be compromised

–Typo-squatting domain (gmal.com)

–Malicious root CA key installed on client

–DNS chicanery during verification process

pkCA, skCA

tls

ClientHello, MaxVersion, NonceC, Supported ciphersuites

ServerHello, Version, NonceS, SessionID, Ciphersuite

Certificate = (pkS, domain name, signature, cert chain)

E(pkS, PMS)

ChangeCipherSpec, Finished,
HMAC(MS, “Client finished” || H(transcript))

ChangeCipherSpec, Finished,
HMAC(MS, “Server finished” || H(transcript’))

MS <- HMAC(PMS, “master secret” || Nc || Ns)
K1,K2 <- HMAC(MS, “key expansion” || Ns || Nc)

Change to symmetric cipher

Exchange info using Ek1, Ek2

blog.com

DigiNotar
• Dutch CA DigiNotar compromised in 2011
• Attackers generated fake certificates
• Twitter.com was redirected to fake site
• Attackers eavesdropped with man-in-the-middle attacks

– Iranian govt eavesdropping on dissidents

DigiNotar

How did compromise occur?
DigiNotar had crappy security
– Out-of-date antivirus software
– Poor software patching
– Weak passwords
– No auditing of logs
– Poorly designed local network

eDellRoot

• Dell shipped several computer systems with a self-
signed root CA certificate preinstalled
– The cert also contained the CA secret key

• Intended purpose: something to do with automated
support software

• If certificate removed, automatically reinstalls on reboot

eDellRoot

