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Cryptography

One time pad

Basic goals and setting

Provable security

TLS (HTTPS)

Block ciphers



Cryptography: “Hidden writing”

• Study and practice of building security 
protocols that resist adversarial behavior

• Blend of mathematics, engineering, computer 
science



Cryptography Example

Internet

US 
diplomatic 

cables

Don’t want to reveal data early

Want to store it in way that it
can quickly be revealed later



Cryptography Example

Internet
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10101010
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11111101

Don’t want to reveal data early

Modern cryptography enables this:
- Encrypt file
- Store key in secure place

Want to store it in way that it
can quickly be revealed later



Crypto Example 2:
Secure Internet communications

backbone

ISP1 ISP2

Bank customer

Bank

Customer and bank want to communicate securely:
- Confidentiality (messages are private)
- Integrity (accepted messages are as sent)
- Authenticity (is it the bank? is this the customer?)
- Sometimes: anonymity  (hide identities)
- Sometimes: steganography (hide that communication took place)

TLS, SSH, IPsec, PGP



example 3

Encrypted hard drives

Corporate intellectual property
Customer financial records
Personal notes

Encrypt hard drives or individual files
- Confidentiality
- Even if attacker has physical access to device

Bitlocker, TrueCrypt, OSX, iOS, Seagate



Crypto

• Powerful tool for confidentiality, authenticity, 
and more

• But:
– must design securely
– must implement designs securely
– must use properly (e.g., key management)



Auguste Kerckhoffs’ (Second) Principle

A cryptosystem should be secure even if its algorithms, 
implementations, configuration, etc. is made public ---
the only secret should be a key

Why?

“The system must not require secrecy and can be stolen 
by the enemy without causing trouble”



primitives
• Encryption
–confidentiality
–symmetric + asymmetric versions

• Message authentication codes
–integrity, authentication
–symmetric

• Digital signatures
–integrity, authentication
–asymmetric

• Key exchange



conventions

Alice Bob

Protagonists

Eve
Mallory

Eavesdropper
(passive adversary)

Malicious Actor
(active adversary)



symmetric encryption

Alice Bob

Message (plaintext)

Eve

Encrypt

K
M

K K

Decrypt

K
MC

Ciphertext



asymmetric encryption

Alice Bob

Bob's public key

Eve

pkB

Encrypt
M

pkA,skA

Decrypt

skB

MC

Bob's secret key

pkB
pkB,skB

pkA



mac

Alice Bob
K K

Verify

K valid or
invalid(M,T)

MAC

K

M T

Mallory

Authentication Tag

Message Authentication Code (MAC) 
message integrity & authenticity / symmetric



digital signatures

Alice Bob

Verify

pkA valid or
invalid(M,S)

Sign

skA

M S

Mallory

message integrity & authenticity / asymmetric

pkA,skA

pkB
pkB,skB

pkA

Signature



key exchange

Alice Bob

…

Eve

K K
Alice and Bob exchange messages in the presence of an 
eavesdropper, and (magically) both generate an identical
secret (symmetric) key that Eve cannot know



key transport

Alice Bob

Eve

K := rand()

pkA,skA

pkB
pkB,skB

pkA

Encrypt

pkB

K C
Decrypt

skB

K

Two main techniques for key exchange
1. Public key transport (shown here)
2. Diffie-Hellman key agreement



Internet

Quantity:     , CC#:  541543123012345610

Data confidentiality

Data integrity

1

We need secure channels for transmitting data

http://amazon.com

An example: Online shopping



An example: On-line shopping with TLS

https://amazon.com

Enc(K, “Quantity:   1 , CC#:  5415431230123456”)
K K

Step 1: 
Key exchange
protocol to
share secret K

Step 2:
Send data via
secure 
channel

TLS uses many cryptographic primitives:
key exchange: hash functions, digital signatures, public key encryption
secure channel: symmetric encryption, message authentication

Mechanisms to resist replay attacks, man-in-the-middle attacks, 
truncation attacks, etc…



A short history of TLS up to 2009

SSL ver 2
SSL ver 2.0 designed by Hickman at Netscape 

1994

Wagner, Goldberg break SSL ver 2
1995

SSL ver 3Freier, Karlton, Kocher design SSL ver 3.0

Bleichenbacher breaks RSA PKCS #1 encryption,

used in SSL ver 3
1998

TLS ver 1 released as IETF standard,

based on SSL 3, many cryptographers involved
2001

TLS ver 1.0

Brumley, Boneh remote timing attacks

Vaudenay, Klima et al. padding attacks

Rogaway IV re-use insecurity

2002

1999

TLS ver 1.1 released as standard

2003

TLS ver 1.1
2006

…

How many 

cryptographers

involved?

(more attacks and fixes)



TLS handshake for
RSA transportBank customer Bank

PMS <- D(sk,C)

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)
Check CERT
using CA public
verification key

Pick random Nc

Pick random Ns

Pick random PMS
C <- E(pk,PMS)

C

ChangeCipherSpec, 
{ Finished, PRF(MS, “Client finished” || H(transcript)) }  

ChangeCipherSpec, 
{ Finished, PRF(MS, “Server finished” || H(transcript’)) }  

MS <- PRF(PMS, “master secret” || Nc || Ns )

Bracket notation
means contents 
encrypted



TLS Record layer
Bank customer Bank

C1

C2

C1 <- E(K1,Message)

MS <- PRF(PMS, “master secret” || Nc || Ns )

K1,K2 <- PRF(MS, “key expansion” || Ns || Nc )

C2 <- E(K2,Message’)
Message <- D(K1,C1)

Message’ <- D(K2,C2)



Primitives used by TLS

CERT = (pk of bank, signature over it) Digital signatures

C Public-key encryption
(RSA)

ChangeCipherSpec, 
{ Finished, PRF(MS, “Client finished” || H(transcript)) }  PRF

Hash function

C1

C2
Symmetric encryption



We’re now at TLS ver 1.2

No (publicly) known attacks
Did the TLS designers get it right?

Even for “simple” applications (secure channels), secure cryptography 

is really hard to design. The problems are rarely in primitives.

Many other tools have similar story:

SSH, IPSec, Kerberos, WEP/WPA  (WiFi security), GSM  (cell phone networks), …

TLS was built via “design-break-redesign-break…”

In last few years host of attacks that affect TLS 1.2 as well have been discovered

[Paterson, Ristenpart, Shrimpton 2011]

Lucky 13 attack [AlFardan, Paterson 2013]

…



Provable security cryptography 
Supplement “design-break-redesign-break…” with a more mathematical approach

1. Design a cryptographic scheme
Shannon 19492. Provide proof that no one 

is able to break it

Scheme semantics

Security

Formal definitions Security proofs

Show it is mathematically
impossible to break security



Symmetric encryption

E D

Kg

key generation

Rk

K

R

M
C C M or 

error

Handled
in TLS key
exchange

R signifies fresh 
random bits.
Where do these 
come from?

C is a ciphertext

Correctness:  D( K , E(K,M,R) ) = M  with probability 1 over randomness used

Kerckhoffs’ principle: what parts are public and which are secret?

Optional



Some attack settings 

• Unknown plaintext
– attacker only sees ciphertexts

• Known plaintext
– attacker knows some plaintext-ciphertext pairs

• Chosen plaintext
– attacker can choose some plaintexts and receive 

encryptions of them



Jane Doe 1343-1321-1231-2310

Michael Swift 9541-3156-1320-2139

John Jones 5616-2341-2341-1210

Eve Judas 2321-4232-1340-1410

2414-2472-2742-7428

3612-4260-2478-7243

6020-7412-7412-2728

7472-1747-2418-2128

Substitution ciphers

E(K, 2321-4232-1340-1410 )   = 

0 1 2 3 4 5 6 7 8 9
8 2 7 4 1 6 0 5 9 3

Kg: output randomly chosen permutation of digits

K = 

7472-1747-2418-2128

plaintext digit

ciphertext digit

Knowing one plaintext, ciphertext 
pair leaks key material!

0 1 2 3 4 5 6 7 8 9
8 2 7 4 1 6 0 5 9 3

Attacker knows  2321-4232-1340-1410

??????????

7472-1747-2418-2128

1343-1321-1231-2310

Julius Caeser



Cracking Simple Substitution

● Brute force attack: Eve would need 26! 
keys. 

● That’s 4.0329146e+26 keys. Too hard!
?

?



Cracking Simple Substitution

● But, wait a minute...
English plaintext

letter frequencies



Cracking Simple Substitution

● But, wait a minute...
English plaintext

letter frequencies
Ciphertext
letter frequencies



Cracking Simple Substitution

● But, wait a minute… frequency analysis 
works! English plaintext

letter frequencies
Ciphertext
letter frequencies



Cracking Simple Substitution

CiphertextEnglish plaintext

● Can sort by frequencies



Cracking Simple Substitution

● Eve wins … you don’t need brute force
● Frequency analysis will break simple 

substitution
?

?



enigma
• Enigma is state of 

the art cryptography 
developed by the 
Germans

• Broken by the Allies
• Raises theoretical 

questions about 
cryptography



One-time pads

Fix some message length L

Kg: output random bit string K of length L

E(K,M) =  M    K D(K,C) =  C     K 



Shannon’s security notion
Def.  A symmetric encryption scheme is perfectly secure if 
for all messages M,M’ and ciphertexts C

Pr[ E(K,M) = C ]   =   Pr[ E(K,M’) = C ]
where probabilities are over choice of K 

In words: 
each message is equally likely to map to a given ciphertext

In other words: 
seeing a ciphertext leaks nothing about what 
message was encrypted

Does a substitution cipher meet this definition? No!



Shannon’s security notion
Def.  A symmetric encryption scheme is perfectly secure if 
for all messages M,M’ and ciphertexts C

Pr[ E(K,M) = C ]   =   Pr[ E(K,M’) = C ]
where probabilities are over choice of K 

Thm.  OTP is perfectly secure

Pr[ K     M = C ]   =    

For any  C and M of length L bits

1 / 2L

Pr[ K     M’ = C ]     Pr[ K     M = C ]   =    



OTP limitations

bank.com

M⊕K

Eve Mallory

K must be as large as M
Reusing K for M,M' leaks M⊕M'
Message length is obvious
Mallory can make undetected modifications



provable security
• Cryptography as a computational science
• Use computational intractability as basis for 

confidence

1. Design a cryptographic scheme
2. Provide a proof that no attacker with bounded 

computational resources can break it
[Goldwasser, Micali, Blum, 1980s]

Formal definitions
- Scheme semantics

and assumption
- Security

Security Proofs (reductions)
Breaking scheme

Breaking assumptions



provable security
• Provable security yields
– well-defined assumptions and security goals
– designers (and attackers) can focus on assumptions

• As long as assumptions hold, we can be 
confident in security of a cryptographic 
scheme



Typical assumptions

• Basic atomic primitives are hard to break:
– Factoring of large composites intractable
– RSA permutation hard-to-invert
– Block ciphers (AES, DES) are good pseudorandom 

permutations (PRPs)
– Hash functions are collision resistant

Confidence in atomic primitives is gained by cryptanalysis,
public design competitions

SHA-3 competition, AES competition



recap
• Symmetric vs asymmetric cryptography

• Primitives
–symmetric/asymmetric encryption
–message authentication codes
–digital signatures
–key exchange

• Provable security

• Shannon's one-time pad
–security guarantees and limitations



Cryptography as computational science
Use computational intractability as basis for confidence in systems

1. Design a cryptographic scheme

Goldwasser, Micali  and Blum circa 1980’s2. Provide proof that no attacker
with limited computational resources
can break it

Scheme semantics

Security

Formal definitions
Security proofs (reductions)

Breaking scheme

Breaking assumptions

Attacker can 
recover credit card

Can factor
large composite
numbers

But no one knows how to 
do this. It’s been studied 

for a very long time!

As long as assumptions holds
we believe  in security of scheme!

Provable security yields
1) well-defined assumptions and security goals
2) attackers (cryptanalysts) can focus on assumptions

Can not factor
large composite
numbers

Attacker can not
recover credit card

Example:


