
CS642:
Computer Security

Spring 2019

University of Wisconsin CS 642

More Low-level software
vulnerability protection
mechanisms

DNSpionage

• Attack: on UEA, Lebanon
– Redirect domain name lookup (e.g.,

www.google.com) to attacker server
– Redirect user traffic to attacker machines
– Capture email passwords
– Capture encryption certificates
– Decrypt intercepted email

http://www.google.com/

DNS hijacking
• Idea: change mapping of domain names to IP

addresses
– These are stored in a server without much protection
– Broke into Netnod domain name registry

• Obtain SSL/TLS certificates for these domains
– Means clients will believe they are connecting

securely
– Means certificate authorities failed

• How normally prevent? DNSSEC puts digital
signature on domain names
– But SSL/TLS certificates were used to spoof DNSSEC

University of Wisconsin CS 642

How can we help prevent exploitation of buffer

overflows and other control flow hijacking?

StackGuard, StackShield

Address space layout randomization

Non-executable memory pages

Software fault isolation

Return-into-libc exploits, Return-oriented

programming

Process memory layout

.text .data .bss heap stack Env.

.text:
machine code of executable

.data:
global initialized variables

.bss:
“below stack section”
global uninitialized variables

heap:
dynamic variables

stack:
local variables, track func calls

Env:
environment variables,
arguments to program

unused space

Low memory
addresses

High memory
addresses

Typical return ptr overwrite exploit

caller
local vars

Low memory
addresses High memory

addresses

temp2temp1EIPEBPname

values ptr

.text .data .bss heap stack Env.

unused space

Low memory
addresses

High memory
addresses

Protecting the stack

Can we protect the return address
from being overwritten?

Two approaches:
• Detect manipulation (and then fail safe)
• Prevent it completely

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

Detection: stack canaries

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

Canary value can be:
• Random value (choose once for whole process)
• NULL bytes / EOF / etc. (string functions won’t copy past canary)

canary

On end of function, check that canary is correct, if not fail safe

Detection: stack canaries

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

StackGuard:
• GCC extension that adds runtime canary checking
• 8% overhead on Apache

canary

ProPolice:
• Modifies how canaries inserted
• Adds protection for registers
• Sorts variables so arrays are highest in stack

Detection: stack canaries

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …canary

Discussion: How would you get around it?

http://www.phrack.org/issues.html?issue=56&id=5

Detection: copying values to safe
location

caller
local vars

Low memory
addresses

High memory
addresses

Param1EIPEBP
local
var1

…

StackShield:
• Function call: copy return address to a safe location

(beginning of .data)
• Check if stack value is different on function exit

Make a copy

Discussion: How would you get around this?

Prevention

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

StackGhost:
• Encrypting the return address
• XOR with random value on function entrance
• XOR with same value on function exit

• Per-kernel XOR vs. Per-process XOR
• Return address stack

Store control flow
information elsewhere

Confinement (sand boxing)

• All the mechanisms thus far are
circumventable

• Can we at least confine code that is potentially
vulnerable so it doesn’t cause harm?

Simple example is chroot

chroot /tmp/guest
su guest

Now all file access are prepended with /tmp/guest

open(“/etc/passwd”, “r”) Attempts to open
/tmp/guest/etc/passwd

Limitation is that all needed files must be inside chroot jail

Limitation: network access not inhibited

Escaping jails

open(“../../etc/passwd”, “r”) Attempts to open
/tmp/guest/../../etc/passwd

chroot should only be executable by root

create /aaa/etc/passwd
create /aaa/etc/sudoers
chroot /aaa
sudo …

System call interposition

• Malicious code must make system calls in
order to do bad things

• So monitor system calls!

monitorprocess

kernel

system call

Ok / not ok

user
land

Janus

Diagram
from
Garfinkel
2003

Wagner et al.

Software-fault isolation example:
Google Native Client

Goal: run native code from a web browser safely

Examples are Quake and XaoS ported over

From Yee
et al. 2009

Software-fault isolation example:
Google Native Client

Inner sandbox
• require code to abide by alignment and structure rules,

allowing disassembly.
Instruction on 16-byte boundaries (no jump inside instructions)

• Fail if any disallowed instructions
• All user addresses in a range
• No write outside range

User data Code

Validator quickly checks that a binary abides by these rules

Software-fault isolation example:
Google Native Client

Outer sandbox
• system call interposition to monitor
• similar to Janus / ptrace

Native client spec perf

Native client Quake perf

More sandboxing: virtualization

• Modern virtual machines (VMs) often used for
sandboxing

VM monitor

VM 1 VM 2

Guest OS Guest OS

AppApp

Host OS

Hardware

NSA NetTop

More sandboxing: virtualization

• Malicious use of virtualization: blue pill virus

Malicious VM monitor

Hidden VM

OS

App

Hardware

Discussion:
state of low level software security

• Do you think Native Client is fool proof?
• What about VM-based sandboxing?

• How does all this make you feel?

