
CS642:
Computer Security

Spring 2019

University of Wisconsin CS 642

Finding vulnerabilities

University of Wisconsin CS 642

Finding vulnerabilities

Fuzzing tools

Simple example: double free

Manual analysis

…

Static analysis, dynamic analysis

From “How Hackers Look for Bugs”, Dave Aitel

From “How Hackers Look for Bugs”, Dave Aitel

Program analyzers

Code
Report Type Line

1 mem leak 324

2 buffer oflow 4,353,245

3 sql injection 23,212

4 stack oflow 86,923

5 dang ptr 8,491

… … …

10,502 info leak 10,921

Program
Analyzer

Spec

potentially
reports many
warnings

may emit
false alarms

analyze large
code bases

false alarm

false alarm

Slide credit: Prof Mitchell Stanford’s CS 155

Example program analyzers

• Manual analysis (you are the analyzer!)

• Static analysis (do not execute program)
– Scanners

– Abstract interpretation

– Symbolic execution

• Dynamic analysis (execute program)
– Debugging

– Fuzzers

– Ptrace
Do you have source code?
Yes: lucky you
No: can still do things, but not as easily

(missing a lot of context about program)

Program analysis:
Soundness and completeness

Property Definition

Soundness If the program contains an error,
the analysis will report a warning.
“Sound for reporting correctness”

Completeness If the analysis reports an error, the
program will contain an error.
“Complete for reporting correctness”

Slide credit: Prof Mitchell Stanford’s CS 155

Complete Incomplete
So

u
n

d
U

n
so

u
n

d

Reports all errors
Reports no false alarms

Reports all errors
May report false alarms

Undecidable Decidable

Decidable

May not report all errors
May report false alarms

Decidable

May not report all errors
Reports no false alarms

Slide credit: Prof Mitchell Stanford’s CS 155

No false positives
No false negatives

No false negatives
False positives

False positives
No false negatives

False negatives
False positives

Manual analysis

• You get a binary or the source code

• You find vulnerabilities

• Experienced analysts accoding to Aitel:
– 1 hour of binary analysis:

• Simple backdoors, coding style, bad API calls (strcpy)

– 1 week of binary analysis:
• Likely to find 1 good vulnerability

– 1 month of binary analysis:
• Likely to find 1 vulnerability no one else will ever find

Disassembly and decompiling

C
Source
Code

Program
Binary
(ELF)

The normal compilation
process

x86
Assembly

Program
Binary
(ELF)

What if we start with
binary?

Disassembler
(gdb, IDA Pro, OllyDebug)

C
Source
Code

Decompiler
(IDA Pro has one)

Very complex, usually poor
results

Tool example: IDA Pro

Tool example: IDA Pro

What type of vulnerability might this be?

Double-free vulnerability

main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(argv[2] != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

Double-free vulnerabilities

Can corrupt the state of the heap management

Say we use a simple doubly-linked list malloc implementation
with control information stored alongside data

chunk.left

chunk.right

user data

fb

Chunk has:
1) left ptr (to previous chunk)
2) right ptr (to next chunk)
3) free bit which denotes if chunk is free

this reuses low bit of right ptr
because we will align chunks

4) user data

NULL

chunk1.right 1

empty

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

NULL

chunk1.right 0

chunk3.left

chunk3.right

data1

empty

1

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1);

NULL

chunk1.right 0

chunk3.left

chunk3.right

data1

data2

0

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1)
b2 = malloc(BUF_SIZE2)

free()
- Consolidate with free neighbors

NULL

chunk1.right 1

chunk3.left

chunk3.right

data1

data2

0

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1)
b2 = malloc(BUF_SIZE2)

free()
- Consolidate with free neighbors

free(b1)

NULL

chunk1.right 1

chunk3.left

chunk3.right

data1

data2

1

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1)
b2 = malloc(BUF_SIZE2)

free()
- Consolidate with free neighbors

free(b1)
free(b2)

NULL

chunk1.right 0

chunk3.left

chunk3.right

data1

data2

1

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1)
b2 = malloc(BUF_SIZE2)

free()
- Consolidate with free neighbors

free(b1)
free(b2)
b3 = malloc(BUF_SIZE1 + BUF_SIZE2)

NULL

chunk1.right 0

chunk3.left

chunk3.right

data1

data2

0

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1)
b2 = malloc(BUF_SIZE2)

free()
- Consolidate with free neighbors

free(b1)
free(b2)

strncpy(b3, argv[1], BUF_SIZE1+BUF_SIZE2-1)

b3 = malloc(BUF_SIZE1 + BUF_SIZE2)

NULL

chunk1.right 0

chunk3.left

chunk3.right

data1

data2

0

chunk2.left

NULL 1

malloc()
- search left-to-right for free chunk
- modify pointers

b1 = malloc(BUF_SIZE1)
b2 = malloc(BUF_SIZE2)

free()
- Consolidate with free neighbors

free(b1)
free(b2)

free(b2)

strncpy(b3, argv[1], BUF_SIZE1+BUF_SIZE2-1)

b3 = malloc(BUF_SIZE1 + BUF_SIZE2)

b2

Interprets b2-8 as a chunk3.left
Interprets b2-4 as a chunk3.right

(b2 - 8)->left->right = (b2-8)->right

(b2 - 8)->right->left = (b2-8)->left

With a clever argv[1]:
write a 4-byte word to an

arbitrary location in memory

What type of vulnerability might this be?

This is very simple example.
Manual analysis is very time
consuming.

Security analysts use a variety of
tools to augment manual analysis

main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(argv[2] != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

Aiding analysts with tools

How can we automatically
find the bug?

Start with dynamic analysis: Fuzzing

“The term first originates from a class project
at the University of Wisconsin 1988 although
similar techniques have been used in the field
of quality assurance, where they are referred
to as robustness testing, syntax testing or
negative testing.”
Wikipedia
http://en.wikipedia.org/wiki/Fuzz_testing

Choose a bunch of inputs
See if they cause program to misbehave
Example of dynamic analysis

Black-box fuzz testing: the goal

ProgramNormal input output(s)

Program
Mutated

input output(s)

Program
Mutated
input 2 Program crash

Black-box fuzz testing

Program
argv[1]=“AAAA”
argv[2]=1 output(s)

Program

argv[1] = random str
argv[2] =

random 32-bit int
output(s)

Achieving code coverage can
be very difficult

main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(argv[2] != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

If x is 32 bits, then probability
of crashing is at most what? 1/232

Fuzzing is a lot about code coverage

• Code coverage defined in many ways
– # of basic blocks reached
– # of paths followed
– # of conditionals followed
– gcov is useful standard tool

• Mutation based
– Start with known-good examples
– Mutate them to new test cases

• heuristics: increase string lengths (AAAAAAAAA…)
• randomly change items

• Generative
– Start with specification of protocol, file format
– Build test case files from it

• Rarely used parts of spec

Manually refine fuzzing
(example from Miller slides)

Multiplayer game
Fuzz for remote exploits
• Capture packets during normal use
• Replace some packet contents with

random values
• Send to game, determine code

coverage

Initial: 614 out of 36183 basic blocks

One big switch statement controlled by third byte of packet
Update fuzz rules to exhaust the values of this third byte

Improves coverage by 4x.
Repeat several times to improve coverage.
Heap overflow found.

From Wikipedia:

Example program analyzers

• Manual analysis (you are the analyzer!)

• Static analysis (do not execute program)
– Scanners

– Symbolic execution

– Abstract representations

• Dynamic analysis (execute program)
– Debugging

– Fuzzers

– Ptrace
Do you have source code?
Yes: lucky you
No: can still do things, but not as easily

(missing a lot of context about program)

Source code scanners

Look at source code, flag suspicious constructs

…
strcpy(ptr1, ptr2);
…

Warning: Don’t use strcpy

Simplest example: grep
Lint is early example
RATS (Rough auditing tool for security)
ITS4 (It’s the Software Stupid Security Scanner)

Circa 1990’s technology:
shouldn’t work for reasonable modern codebases

Source Code

LLVM bitcode

Symbolic Executor
(e.g., KLEE)

Environment
spec

Clang

Bug found
Input that gets to that bug

Source to
intermediate
representation

Emulation
Execution
symbolically

• Technique for statically analyzing
code paths and finding inputs

• Associate to each input variable a
special symbol
– called symbolic variable

• Simulate execution symbolically
– Update symbolic variable’s value

appropriately
– Conditionals add constraints on

possible values

• Cast constraints as satisfiability,
and use SAT solver to find inputs

Symbolic execution

Symbolic execution
main(int argc, char* argv[]) {
char* b1;
char* b2;
char* b3;

if(argc != 3) then return 0;
if(argv[2] != 31337)

complicatedFunction();
else {

b1 = (char*)malloc(248);
b2 = (char*)malloc(248);
free(b1);
free(b2);
b3 = (char*)malloc(512);
strncpy(b3, argv[1], 511);
free(b2);
free(b3);

}
}

argc = x (unconstrained int)
argv[2] = z (memory array)

Initially:

x = 3?

z = 31337? finished

x != 3x = 3

x = 3 ^
z = 31337

Continue in buggy
basic block

Continue in
complicatedFunction()

x = 3 ^
z != 31337

- Eventually emulation hits a double free
- Can trace back up path to determine what x, z
must have been to hit this basic block

Symbolic execution challenges

• Can we complete analyses?
– Yes, but only for very simple programs

– Exponential # of paths to explore

• Path selection
– Might get stuck in complicatedFunction()

• Encoding checks on symbolic states
– Must include logic for double free check

– Symbolic execution on binary more challenging
(lose most memory semantics)

Software

. . .

Behaviors

Sound
Over-approximation of

Behaviors

False
Alarm

Reported
Error

approximation is too coarse…
…yields too many false alarms

Modules

Slide credit: Prof Mitchell Stanford’s CS 155

entry

X  0

Is Y = 0 ?

X  X + 1 X  X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

Does this program ever crash?

Slide credit: Prof Mitchell Stanford’s CS 155

entry

X  0

Is Y = 0 ?

X  X + 1 X  X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

infeasible path!
… program will never crash

Does this program ever crash?

Slide credit: Prof Mitchell Stanford’s CS 155

entry

X  0

Is Y = 0 ?

X  X + 1 X  X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

X = 0

X = 0

X = 1

X = 1

X = 1

X = 1

X = 1

X = 2

X = 2

X = 2

X = 2

X = 2

X = 3

X = 3

X = 3

X = 3

non-termination!
… therefore, need to approximate

Try analyzing without approximating…

Slide credit: Prof Mitchell Stanford’s CS 155

entry

X  0

Is Y = 0 ?

X  X + 1 X  X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

X = 0

X = 0

X = pos

X = T

X = neg

X = 0

X = T X = T

X = T

Try analyzing with “signs” approximation…

terminates...
… but reports false alarm
… therefore, need more precision

lost
precision

X = T

Slide credit: Prof Mitchell Stanford’s CS 155

entry

X  0

Is Y = 0 ?

X  X + 1 X  X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

X = 0true

X = 0Y=0

X = posY=0 X = neg Y0

X = posY=0
X = negY0

X = posY=0

X = pos Y=0

X = neg Y0

X = 0 Y0

Try analyzing with “path-sensitive signs” approximation…

terminates...
… no false alarm
… soundly proved never crashes

no precision loss

refinement

Slide credit: Prof Mitchell Stanford’s CS 155

Bug finding is a big business

• Grammatech (Prof Reps here at Wisconsin)

• Coverity (Stanford startup)

• Fortify

• many, many others…

Example program analyzers

• Manual analysis (you are the analyzer!)

• Static analysis (do not execute program)
– Scanners

– Abstract interpretation

– Symbolic execution

• Dynamic analysis (execute program)
– Debugging

– Fuzzers

– Ptrace
Do you have source code?
Yes: lucky you
No: can still do things, but not as easily

(missing a lot of context about program)

Taint tracking

Track information flow from user input to it’s use

Can be either static or dynamic

Useful to augment manual testing

ProgramNormal input

strcpy(buf, argv[1]);

White-box fuzz testing

• Start with real input and do static analysis

– Symbolic execution of program

– Gather constraints (control flow) along way

– Systematically negate constraints backwards

– Eventually this yields a new input

• Repeat

Godefroid, Levin, Molnar. “Automated Whitebox Fuzz Testing”

Symbolic execution + fuzzing

void top(char input[4]) {
int cnt=0;
if (input[0] == ’b’) cnt++;
if (input[1] == ’a’) cnt++;
if (input[2] == ’d’) cnt++;
if (input[3] == ’!’) cnt++;
if (cnt >= 3) abort(); // error

}

Example from Godefroid et al.

Start with some input.
Run program for real & symbolicly
Say input = “good”

i0 != ‘b’
i1 != ‘a’
i2 != ‘d’
i3 != ‘!’

i0,i1,i2,i3
are all
symbolic
variables

This gives set of constraints on input
Negate them one at a time to generate a
new input that explores new path

Example
i0 != ‘b’ and i1 != ‘a’ and i2 != ‘d’ and i3 = ‘!’
input would be ``goo!’’

Repeat with new input

Dynamic Analysis

• Key idea: add test code to detect memory
errors

– Instrument execution of program

• what is interesting?

– Keep extra metadata about what is happening

• What data can we keep

– Detect errors when or after they occur

• How?

Example: Address Sanitizer

• Built into GCC:
– gcc –fsanitize=address meet.c

• Catches:
– Out-of-bounds accesses to heap, stack and globals
– Use-after-free
– Use-after-return (runtime flag

ASAN_OPTIONS=detect_stack_use_after_return=1)
– Use-after-scope (clang flag -fsanitize-address-use-

after-scope)
– Double-free, invalid free
– Memory leaks (experimental)

Address Sanitizer approach

• Store 1 byte of metadata for every 8 bytes of
memory
– Metadata = Addr>>3 + Offset

• Value 0: all 8 bytes accessible

• Value 1 < n < 7: first n bytes accessible

• Value < 0: memory in accessible for various reasons

• Instrument memory accesses
ShadowAddr = (Addr >> 3) + Offset;

if (*ShadowAddr != 0)

ReportAndCrash(Addr);

Memory Layout

• Heap: Add redzone between allocations –
invalid addresses

• Stack/Globals: add redzone between variables

void foo() {
char rz1[32]
char arr[10];
char rz2[32-10+32];
// set up shadow
<function body>

void foo() {
char a[10];
<function body>

}

Demo

• Run on meet.c

