OS Security Basics

CS642.
Computer Security

Lecture 2
Operating System Security

University of Wisconsin CS 642

Learning Goals

Goals for OS security
OS security mechanisms
Password authentication

Access control in Unix

Confidentiality/privacy

* Confidentiality is concealment of information.

#

/

/
/

- , -
R network
: -+ :—" > s

Eavesdropping,
packet sniffing,
illegal copying

Integrity

* Integrity is prevention of unauthorized changes.

P
g\ %

Intercept messages,
tamper, release again

Authenticity

* Authenticity is knowing who you’re talking to.

Unauthorized assumption of
another’s identity

ﬁ network

Availability

* Availability is ability to use information or resources.

Overwhelm or crash servers,
disrupt infrastructure

network

Security Design Principles

e Saltzer &Schroeder, 1975, as part of Multics

1) Economy of mechanism

2) Fail-safe defaults

3) Complete mediation

4) Open design

5) Separation of privilege

6) Least privilege

7) Least common mechanism
8) Psychological acceptability

Economy of mechanism

University of Wisconsin CS 642

Fail-safe defaults

iSAdmin = true;

try {
codeWhichMayFail();

isSAdmin = isUserInRole(“Administrator”);

}

catch (Exception ex) {
log.write(ex.toString());

}

(Example from https://www.owasp.org/index.php/Secure_Coding_Principles)

Complete mediation

Open design

(avoid “security by obscurity”)

University of Wisconsin CS 642

Separation of privilege

TO

MECE AND DMOCCC

ON DUTY

University of Wisconsin CS 642

Least privilege

Game Deall Help

Score: 461
Moves: 39

(Courtesy of UCB CS161 slides)

University of Wisconsin CS 642

Least common mechanism
(isolation)

University of Wisconsin CS 642

Psychological acceptability

(consider human factors)

Website Certified by an Unknown Authority

-

Unable to verify the identity of * . hslc,wisc.edu as a trusted site,

Possible reasons For this error;

- Your browser does not recognize the Certificate Authority that issued the site's certificate,
- The site's certificate is incomplete due to a server misconfiguration,

- You are connected to a site pretending ko be * . hslc,wisc.edu, possibly to obtain vour
confidential information,

Please notify the site's webmaster about this problem.
Before accepting this certificate, wou should examine this site's certificate carefully. Are vou

willing to ko accept this certificate For the purpose of identifving the Web site
* hslc.wisc.edu?

| Examine Certificate. ..

() Accept this certificate permanently
(%) Accept this certificate temporarily For this session

() Do not accept this certificate and do not connect to this Web site

QK] | Cancel J

University of Wisconsin CS 642

Principles from 1970’s

* Do you think they are relevant today?
* A bit... abstract

* Recur over and over again

Limited Direct Execution

Problem: how does the OS share the CPU between
multiple processes, but remain in control

Proposal: privileged mode— switching back and forth
between user process and operating system

— How maintain control, so a buggy/malicious process
cannot take over?

Solution: Limited direct execution

— Let programs run directly on the CPU, but not do
everything

— To start a program, OS jumps to first instruction of
program’s main function (more or less)

Restricted Operations

* Problem: some operations shouldn’t be
available to programs

— Writing data to a disk: how separate users from
each other?

— Decide which memory is accessible

e Solution: modes

Privileged instructions

* some instructions are restricted to the OS
— known as protected or privileged instructions

* e.g., only the OS can:
— directly access I/O devices (disks, network cards)
* why?
— manipulate memory state management
* Which process can access which memory

— halt instruction
e why?

© 2004-2007 Ed Lazowska, Hank Levy,
Andrea and Remzi Arpaci-Dussea, Michael
Swift

OS protection

* So how does the processor know if a protected
instruction should be executed?

— the architecture must support at least two modes of
operation: kernel mode and user mode

— mode is set by status bit in a protected processor register
* user programs execute in user mode
* OS executes in kernel mode (OS == kernel)

* Protected instructions can only be executed in the
kernel mode

— what happens if user mode executes a protected
instruction?

* CPU enters protected mode automatically on
interrupts/traps/exceptions

— E.g. network packet arrives

Crossing protection boundaries

* So how do user programs do something privileged?

— e.g., how can you write to a disk if you can’t do I/O instructions?
e User programs must call an OS procedure

— OS defines a sequence of system calls

— how does the user-mode to kernel-mode transition happen?

— Why limit set of functions that can be called?
 There must be a system call operation, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
— saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller’s parameters (e.g., pointers)

— must be a way to return to user mode once done

A kernel crossing illustrated

User Mode
Mode bit =1
User process » System Call Resume process
\ /
Trap Kernel Mode Return
Mode bit =0 Mode bit=0 Mode bit = 1

X /

Save Caller’s state

A 4
\ 4

Execute system call Restore state

System call details

How does the
kernel know which
system call?

— In a register

Where are the
parameters?

— In a register
— on the stack
— in a memory block

Limit set of kernel
functions

— System call table

<open>: push %ebx

<open+1>: mov 0x10(%esp) ,%edx
<open+5>: mov Oxc(%esp) ,%ecx
<open+9>: mov Ox8(%esp) ,%ebx
<open+13>: mov $0x5 ,%eax
<open+18>: syscall

<open+20>: pop %ebx

<open+21>: cmp $OxFffffo0l,%eax
<open+26>: jae 0x2a189d <open+29>
<open+28>: ret

system call handler stub
ENTRY(system_call)

pushl %eax # save orig_eax

SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl S(nr_syscalls), %eax
jae syscall_badsys
syscall_call:

call *sys_call_table(,%eax,4)
movl %eax,EAX(%esp)

store the return value

Validating parameters

 Sample calls:
— fd = open(filename, O RDONLY)
— Result = read(fd, buffer, nbytes)
 What if filename is not null terminated?

— Kernel overwrites local buffer & corrupts

 What if buffer points to a kernel address?

— Kernel overwrites kernel structure with file data

Linux Validation

 Sample calls:
— fd = open(“/tmp/my_data”, O RDONLY)

getname_flags(const char _ user *filename,

long do_sys open(int dfd,
int flags, int *empty)

const char _ user *filename,

int flags, umode t mode) {
{ struct filename *result;
struct filename *tmp; char *kname;
if (fd) int len;
return fd; len = strncpy_from_user(kname,
tmp = getname(filename); filename,
~ EMBEDDED_NAME_MAX) ;
} if (unlikely(len < 0@)) {

return ERR_PTR(1len);
}

Safe string copy

long strncpy_from_user(char *dst, const char __user *src, long count)

{
unsigned long max_addr, src_addr;
if (unlikely(count <= 0))
return 0;
max_addr = user_addr_max();
src_addr = (unsigned long)src;
if (likely(src_addr < max_addr)) {
unsigned long max = max_addr - src_addr;
long retval;
kasan_check_write(dst, count);
check_object_size(dst, count, false);
user_access_begin();
retval = do_strncpy_from_user(dst, src, count, max);
user_access_end();
return retval;
}
return -EFAULT;
H

EXPORT_SYMBOL(strncpy_from_user);

Fast string copy

ENTRY(copy_user_enhanced_fast_string)
e ASM_STAC
cmpl $64,%edx
jb .L_copy_short_string /* less then 64 bytes, avoid the costly 'rep' */
movl ¥edx,%ecx
1: rep
movsb
xorl ¥eax,%eax
ASM_CLAC
. ret

.section .fixup,"ax"

12: movl ¥ecx,%edx /* ecx 1s zerorest also */
jmp copy_user_handle_tail
.previous

_ASM_EXTABLE(1b,12b)

Safe copy to usermode

static int copyout(void __user *to, const void *from, size_t n)
{
if (access_ok(VERIFY_WRITE, to, n)) {
kasan_check_read(from, n);
n = raw_copy_to_user(to, from, n);

}

return n;

}

static __always_inline __must_check unsigned long
raw_copy_to_user(void __user *dst, const void *src, unsigned long size

)
{
int ret = 0;
__uaccess_begin();
__put_user_asm(*(u3Z *)src, (u32 __user *)dst,
ret, "L", "k", "ir", 4);
__uaccess_end();
return ret;

Authentication

» Establish the identity of user/machine by
— Something you know (password, secret)
— Something you have (credit card, smart card)
— Something you are (retinal scan, fingerprint)
* Inthe case of an OS this is done during login
— OS wants to know who the user is

* Passwords: secret known only to the subject
— Simplest OS implementation keeps (login, password) pair
— Authenticates user on login by checking the password

— Try to make this scheme as secure as possible!
* Display the password when being typed? (Windows, UNIX)

Online passwords attacks

Online attacks: system used to verify the guesses
— How someone broke into LBL

LBL> telnet elxsi

ELXSI AT LBL

LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

— Thwart these attacks:
* limit the number of guesses
* better passwords

Why encrypt passwords?

Example: TENEX page-fault caper

TENEX, Secure system done at BBN in the 70s
Tiger team dispatched to try to break a secure system.

Passwo_rds were 8 characters—machine too slow to do
exhaustive search.

So, align password on page boundary.
e Time password check.

e |f process takes a page fault, you can tell how many of the characters
were valid.

e Turns 528to a 52 * 8 problem.

bf | aaaaaaa

fa | aaaaaa

fea | aaaaa

Better password storage

* store username/encrypted password in file
— Properties of the one-way hash function h:
* his not invertible: h(m) easy to compute, h”1(m) difficult
e Itis hard to find mand m’ s.t. h(m) =h(m’)
— Should use standard functions, such as SHA, MD5, etc.

© 2004-2007 Ed Lazowska, Hank Levy,
1/24/19 Andrea and Remzi Arpaci-Dussea, Michael
Swift

32

Offline Attacks

* Previous scheme can be attacked: Dictionary Attack

Attacker builds dictionary of likely passwords offline

At leisure, builds hash of all the entries

Checks file to see if hash matches any entry in password file
There will be a match unless passwords are truly random

20-30% of passwords in UNIX are variants of common words
* Morris, Thompson 1979, Klein 1990, Kabay 1997

e Solutions:
— Passwords should be made secure: increase complexity from 26° to

728
* Length, case, digits, not from dictionary
Shadow files: move password file to /etc/shadow
* This is accessible only to users with root permissions
Salt: store (user name, salt, E(password+salt))
e Simple dictionary attack will not work. Search space is more.

Salting Example

Bobbie, 4238, e(Dog4238)

Tony, 2918, e(6%%TaeFF2918)

Laura, 6902, e(Shakespeare6902)

Mark, 1694, e(XaB@Bwcz1694)

Deborah, 1092, e(LordByron,1092)

* |If the hacker guesses Dog, he has to try Dog0001], ...

© 2004-2007 Ed Lazowska, Hank Levy,
1/24/19 Andrea and Remzi Arpaci-Dussea, Michael
Swift

34

Access controls

* Basic question: who gets access

tow
— W
— W

nat for what purpose?

no = subjects. Users, programs

nat = objects. Files, other

programs, OS objects

— Purpose = read, write, search,
execute, change access

Access control matrix

Objects
filel file 2 filen
user 1 read, write | read, read
write, own
user 2
Subjects
user m append read, read,write,
execute own

User i has permissions for file j as indicated in cell [i,]]

Due originally to Lampson in 1971

Access control in Real world

* Guard: something that checks for
access

)
o
* Approach 1: Check a list of allowed
people

* Approach 2: Check if person has a key
or ticket

http://marnieburkman.blogspot.com/2012/10/the-body-both-lock-key-for-healing-from.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Access control implementation

paradigms
file 1 file 2 filen _
(1) Access control lists
user 1 read, read, read . .
write | write, Column stored with file
own File 1: userl: RW, user m:A
2 A
o (2) Capabilities
Row stored for each user
User 1: file 1:RW, file
userm | append | read, read,wr ZZRWO, file n:R
execute ite,own How? Unforgeable
tickets given

to user

ACLs compared to Capabilities

ACLs requires
authenticating user

Processes must be given
permissions

Reference monitor must
protect permission setting

Token-based approach
avoids need for auth

Tokens can be passed
around

Reference monitor must
manage tokens

UNIX-style file system

® O Terminal — -tcsh — 80x20
[swift:~/tmp] 1ls -1

total 2806

drwxr-xr-x@|43 swift staff 1376 Jan 3 16:82 @sim/
drwxr-xr-x |33 swift staff 1856 Jan 18 2016 assess/
drwxr-xr-x@|53 swift staff 1696 Nov 4 11:01 bigdata/

drwxr-xr-x |34 swift staff 1088 Jan 5 2016 get-comics/
“PW=r==p=-- 1 swift staff 319875 Jan 23 2014 grant-template.tar.gz
“PW=r==p=-- 1 swift staff 1848 Jul 14 2816 jacob.java
drwxr-xr-x@|18 swift staff 320 Jan 26 2017 latex-example/
“PW=r==p=-- 1 swift staff 41525 Jan 26 2017 latex.tgz

drwx------ 3 swift staff 96 Jun 28 2016 music/

-rw-r--r--@| 1 swift staff 51884 Jan 18 2017 nsys.tar.gz
“PW=r==p=-- 1 swift staff 3973 Mar 13 2018 offices.txt
“PW=r==p=-- 1 swift staff ® Sep 280 2017 outputfile.txt

drwxr-xr-x |46 swift staff 1472 Oct 15 11:15 pl/
“PW=r==p=-- swift staff 64804 Mar 3 2017 pgll.html
-rW-r--r--@ swift staff 4506 Nov 20 2817 server.c
drwxr-xr-x@|37 swift staff 1184 Sep 25 16:57 ultron/
“PW=r==p=-- 1 swift staff 27 Nov 6 2014 zits.pl
{[swift:~/tmp] i

e

UNIX-style file system ACLs

Terminal — -tcsh — 80x20

® @
[swift:~/tmp] 1ls -1
total 886
drwxr-xr-x@ 43
drwxr-xr-x 33
drwxr-xr-x@ 53
drwxr-xr-x 34 swift
“PW=P==r=-- 1 swift
' 1 swift
1ft

swift
swift
swift

L drwxr-xr=
-PW=-P==r--

 =PW=P==P=--
foPW-p--p--
| drwxr-xr-x
{ =PW-P=--pr--
{ “rW-r--r--
:drwxr-xr-x
! -PrW-Pr--r--

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

staff
staff
staff
staff
staff
staff
staff

Owner (swift)
Group (staff)

1376
1856
1696
1088
319875
10480
320
41525

Jan
Jan
Nov
Jan
Jan
Jul
Jan
Jan

3 16:02
18 2016
4 11:01
5 2016
23 2014
14 2016
26 2017
26 2017

assess/

bigdata/

get-comics/
grant-template.tar.gz
jacob.java
latex-example/

latex.tgz

\\\

txt

/

| [swift:~/tmp

Unix File system capabilities

int fd = open(“~/class/exam.txt”);
read(fd, buffer,1024);

o File descripto 'S dre void send_fd(int socket, int fd) {

struct msghdr msg = {0};
134 msg.msg _control = buf; msg.msg _controllen
Capabllltles = sizeof buf;
struct cmsghdr * cmsg =
CMSG_FIRSTHDR(&msg);

— Allow access to file cnsg->cnsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
1 cmsg->cmsg_len = CMSG_LEN(sizeof fd);
even If ACL Changes *((int *) CMSG_DATA(cmsg)) = fd;

msg.msg _controllen = cmsg->cmsg len; //

— Can be passed to other | Sendnsg(socket, &nse, 0);
processes/users

Delegation

* Need to give a process, other user access

 With ACLs,

— Option 1: run a new process, inherits user’s
permissions

— Option 2: change ACL to grant access to another
user

 What if it is not your file?
* With, pass around token

Revocation

* Take away access from user or process

* |In ACL,
— remove user from list

O © Terminal — -tcsh — 80x20
[swift:~/tmp] 1ls -1 pgll.html

-rw-r--r-- 1 swift staff 6404 Mar 3 2017 pgll.html
[swift:~/tmp] chmod g-r pgll.html

[swift:~/tmp] 1ls -1 pgll.html

=rw----r-- 1 swift staff 6484 Mar 3 2017 pgll.html

[swift:~/tmp]

* |n Capabilities
— Option 1: track location of all capabilities, find and delete

— Option 2: make capabilities indirect: point to an object that
can be deleted, not to shared object directly

Who uses capabilities?

* Research operating systems:

— Eros, ExoKernel, Barrelfish, Singularity
* Microkernels

— Mach, Google Fuschia
* Mainstream OS (somewhere)

— Use ACL when opening object, return a capability
for faster access later

* Linux/MacOS: file descriptors
* Windows: handles

UNIX-style file system ACLs

swift
swift
swift
swift
swift

® O
[swift:~/tmp] 1ls -1
total 886
drwxr-xr-x@ 43
drwxr-xr-x 33
drwxr-xr-x@ 53
drwxr-xr-x 34
“-PW=-P==-pr-- 1
| =rw- 1

Ldrwxr-xr=
-PW=-P==r--

 =PW=P==P=--
foPW-p--p--
| drwxr-xr-x
{ “FrW-pr=--p--
¢ =PW=P==p=--
drwxr-xr-
-rw-r--
| [swift:~/tmp

= =a ==

Group (staff)

swift
ift

Permissions:

staff
staff
staff
staff
staff
staff
staff

Directory?

Owner (r,w,x) , group (r,w,x), all (r, w, x)

Terminal — -tcsh — 80x20

1376
1856
1696
1088
319875
10480
320
41525

Jan
Jan
Nov
Jan
Jan
Jul
Jan
Jan

3 16:02
18 2016
4 11:01
5 2016
23 2014
14 2016
26 2017
26 2017

@sim/

assess/

bigdata/

get-comics/
grant-template.tar.gz
jacob.java
latex-example/

latex.tgz

N

txt

Roles (groups)

Group is a set of users

Administrator User Guest

Simplifies assignment of permissions at scale
Implemented as a UserID and multiple GroupIDs for

each process
User 1 >< Administrator \z/etc/passwd
User 2 User \ /usr/local/
User 3 -> Guest /tmp/

UNIX file permissions

Owner, group
Permissions set by owner / root

Resolving permissions:

— If user=owner, then owner privileges
* Plus permissions to change ACL

— If user in group, then group privileges
— Otherwise, all privileges

QUESTION: what do group members get if
permission is —rw----rw?

Windows File permissions

* ACL = list of Access Control Entries (ACEs)
* Entries {allow,deny} permissions to a user or

group
— Multiple users or groups vs 1 for Linux
* ACE1: UserA: alllow read |
* ACE2: UserB: allow/Write Rt J:OUI::CL e
— Can explicitly deny access ACE: Access Dened N expi aces
 ACE1: UserA: deny read ACE: Access Denied ‘# Inherited
ACE: Access Allowed | | AcEs

 ACE2: Everyone: Read
— Question: How implement
Unix ACLs?

