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OS Security Basics



Learning Goals

• Goals for OS security
• OS security mechanisms
• Password authentication
• Access control in Unix



Confidentiality/privacy



Integrity



Authenticity



Availability



1) Economy of mechanism
2) Fail-safe defaults
3) Complete mediation
4) Open design
5) Separation of privilege
6) Least privilege
7) Least common mechanism
8) Psychological acceptability

Security Design Principles

• Saltzer &Schroeder, 1975, as part of Multics
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Economy of mechanism
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Fail-safe defaults

University of Wisconsin CS 642

isAdmin = true;
try {

codeWhichMayFail();
isAdmin = isUserInRole( “Administrator” );

}
catch (Exception ex) {

log.write( ex.toString() );
}

(Example from https://www.owasp.org/index.php/Secure_Coding_Principles)



Complete mediation
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Open design 
(avoid “security by obscurity”)
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Separation of privilege
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Least privilege
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This%program
can%delete%any
file%you%can.

(Courtesy of UCB CS161 slides)



Least common mechanism
(isolation)
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Psychological acceptability
(consider human factors)
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Principles from 1970’s

• Do you think they are relevant today?
• A bit… abstract
• Recur over and over again
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Limited Direct Execution
• Problem: how does the OS share the CPU between 

multiple processes, but remain in control
• Proposal: privileged mode– switching back and forth 

between user process and operating system
– How maintain control, so a buggy/malicious process 

cannot take over?
• Solution: Limited direct execution
– Let programs run directly on the CPU, but not do 

everything
– To start a program, OS jumps to first instruction of 

program’s main function (more or less)
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Restricted Operations

• Problem: some operations shouldn’t be 

available to programs

–Writing data to a disk: how separate users from 

each other?

– Decide which memory is accessible

• Solution: modes
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Privileged instructions

• some instructions are restricted to the OS
– known as protected or privileged instructions

• e.g., only the OS can:
– directly access I/O devices (disks, network cards)
• why?

– manipulate memory state management
• Which process can access which memory

– halt instruction
• why?
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OS protection

• So how does the processor know if a protected 
instruction should be executed?
– the architecture must support at least two modes of 

operation: kernel mode and user mode
– mode is set by status bit in a protected processor register

• user programs execute in user mode
• OS executes in kernel mode   (OS == kernel)

• Protected instructions can only be executed in the 
kernel mode
– what happens if user mode executes a protected 

instruction?
• CPU enters protected mode automatically on 

interrupts/traps/exceptions
– E.g. network packet arrives
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Crossing protection boundaries
• So how do user programs do something privileged?

– e.g., how can you write to a disk if you can’t do I/O instructions?
• User programs must call an OS procedure

– OS defines a sequence of system calls
– how does the user-mode to kernel-mode transition happen?
– Why limit set of functions that can be called?

• There must be a system call operation, which:
– causes an exception (throws a software interrupt), which 

vectors to a kernel handler
– passes a parameter indicating which system call to invoke
– saves caller’s state (regs, mode bit) so they can be restored
– OS must verify caller’s parameters (e.g., pointers)
– must be a way to return to user mode once done
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A kernel crossing illustrated

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0
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System call details
• How does the 

kernel know which 
system call?
– In a register

• Where are the 
parameters?
– in a register
– on the stack
– in a memory block

• Limit set of kernel 
functions
– System call table

# system call handler stub
ENTRY(system_call)

pushl %eax                      # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl $(nr_syscalls), %eax
jae syscall_badsys
syscall_call:
call *sys_call_table(,%eax,4)
movl %eax,EAX(%esp)             # store the return value

<open>:        push   %ebx
<open+1>:      mov 0x10(%esp),%edx
<open+5>:      mov 0xc(%esp),%ecx
<open+9>:      mov 0x8(%esp),%ebx
<open+13>:     mov $0x5,%eax
<open+18>:     syscall
<open+20>:     pop    %ebx
<open+21>:     cmp $0xfffff001,%eax
<open+26>:     jae 0x2a189d <open+29>
<open+28>:     ret    



Validating parameters

• Sample calls:
– fd = open(filename, O_RDONLY)
– Result = read(fd, buffer, nbytes)

• What if filename is not null terminated?
– Kernel overwrites local buffer & corrupts

• What if buffer points to a kernel address?
– Kernel overwrites kernel structure with file data



Linux Validation

• Sample calls:
– fd = open(“/tmp/my_data”, O_RDONLY)

long do_sys_open(int dfd, 
const char __user *filename, 
int flags, umode_t mode)

{
struct filename *tmp;
if (fd)
return fd;

tmp = getname(filename);
…

}

getname_flags(const char __user *filename, 
int flags, int *empty)

{
struct filename *result;
char *kname;
int len;
len = strncpy_from_user(kname, 

filename, 
EMBEDDED_NAME_MAX);

if (unlikely(len < 0)) {
return ERR_PTR(len);

}
...



Safe string copy



Fast string copy



Safe copy to usermode
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Authentication
• Establish the identity of user/machine by

– Something you know (password, secret)
– Something you have (credit card, smart card)
– Something you are (retinal scan, fingerprint)

• In the case of an OS this is done during login
– OS wants to know who the user is

• Passwords: secret known only to the subject
– Simplest OS implementation keeps (login, password) pair
– Authenticates user on login by checking the password
– Try to make this scheme as secure as possible!

• Display the password when being typed? (Windows, UNIX)
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Online passwords attacks
• Online attacks: system used to verify the guesses

– How someone broke into LBL

– Thwart these attacks: 
• limit the number of guesses 
• better passwords



Why encrypt passwords?

Example: TENEX page-fault caper 
•  TENEX, Secure system done at BBN in the ‘70s 
•  Tiger team dispatched to try to break a secure system. 
•  Passwords were 8 characters—machine too slow to do 

exhaustive search. 
•  So, align password on page boundary. 

•  Time password check. 
•  If process takes a page fault, you can tell how many of the characters 

were valid. 
•  Turns 528 to a 52 * 8 problem. 

4/25/13 CS161 Spring 2013 17 

aaaaaaa a b c e d f 

fa aaaaaa 

fea aaaaa 
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Better password storage

• store username/encrypted password in file
– Properties of the one-way hash function h:

• h is not invertible: h(m) easy to compute, h-1(m) difficult 
• It is hard to find m and m� s.t. h(m) = h(m�)

– Should use standard functions, such as SHA, MD5, etc.

Crypto hash Compare Password 
FILE
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Offline Attacks
• Previous scheme can be attacked: Dictionary Attack

– Attacker builds dictionary of likely passwords offline
– At leisure, builds hash of all the entries
– Checks file to see if hash matches any entry in password file
– There will be a match unless passwords are truly random
– 20-30% of passwords in UNIX are variants of common words

• Morris, Thompson 1979, Klein 1990, Kabay 1997

• Solutions:
– Passwords should be made secure: increase complexity from 266 to 

728

• Length, case, digits, not from dictionary
– Shadow files: move password file to /etc/shadow

• This is accessible only to users with root permissions
– Salt: store (user name, salt, E(password+salt))

• Simple dictionary attack will not work. Search space is more.



Salting Example

• If the hacker guesses Dog, he has to try Dog0001, …
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Access controls

• Basic question: who gets access 
to what for what purpose?
–Who = subjects. Users, programs
–What = objects. Files, other 

programs, OS objects
– Purpose = read, write, search, 

execute, change access



Access control matrix

file 1 file 2 … file n

user 1 read, write read,
write, own

read

user 2

…

user m append read, 
execute

read,write,
own

User  i has permissions  for file j  as indicated in cell [i,j]

Due originally to Lampson in 1971 

Subjects

Objects



Access control in Real world

• Guard: something that checks for 
access

• Approach 1: Check a list of allowed 
people

• Approach 2: Check if person has a key 
or ticket

This Photo by Unknown Author is 
licensed under CC BY-SA-NC

http://marnieburkman.blogspot.com/2012/10/the-body-both-lock-key-for-healing-from.html
https://creativecommons.org/licenses/by-nc-sa/3.0/


Access control implementation 
paradigms

file 1 file 2 … file n

user 1 read, 
write

read,
write, 
own

read

user 2

…

user m append read, 
execute

read,wr
ite,own

(1) Access control lists

Column stored with file
File 1: user1: RW, user m:A

(2) Capabilities
Row stored for each user
User 1: file 1:RW, file 
2:RWO, file n:R

How? Unforgeable 
tickets given
to user



ACLs compared to Capabilities

ACLs requires 
authenticating user

Token-based approach
avoids need for auth

Tokens can be passed
around

Reference monitor must
manage tokens

Processes must be given
permissions

Reference monitor must
protect permission setting



UNIX-style file system



UNIX-style file system ACLs

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

Owner (swift)
Group (staff)



Unix File system capabilities

• File descriptors are 
capabilities
– Allow access to file 

even if ACL changes
– Can be passed to other 

processes/users

int fd = open(“~/class/exam.txt”);
read(fd,buffer,1024);

void send_fd(int socket, int fd) { 
struct   msghdr msg = {0}; 
msg.msg_control = buf; msg.msg_controllen

= sizeof buf; 
struct cmsghdr * cmsg =

CMSG_FIRSTHDR(&msg); 
cmsg->cmsg_level = SOL_SOCKET; 
cmsg->cmsg_type = SCM_RIGHTS; 
cmsg->cmsg_len = CMSG_LEN(sizeof fd); 
*((int *) CMSG_DATA(cmsg)) = fd;  
msg.msg_controllen = cmsg->cmsg_len; //
sendmsg(socket, &msg, 0); 

}



Delegation

• Need to give a process, other user access

• With ACLs, 
– Option 1: run a new process, inherits user’s 

permissions
– Option 2: change ACL to grant access to another 

user
• What if it is not your file?

• With, pass around token 



Revocation
• Take away access from user or process
• In ACL, 
– remove user from list

• In Capabilities
– Option 1: track location of all capabilities, find and delete
– Option 2: make capabilities indirect: point to an object that 

can be deleted, not to shared object directly



Who uses capabilities?

• Research operating systems:
– Eros, ExoKernel, Barrelfish, Singularity

• Microkernels
–Mach, Google Fuschia

• Mainstream OS (somewhere)
– Use ACL when opening object, return a capability 

for faster access later
• Linux/MacOS: file descriptors
• Windows: handles



UNIX-style file system ACLs

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

Owner (swift)
Group (staff)



Roles (groups)

Group is a set of users

Administrator User Guest

Simplifies assignment of permissions at scale
Implemented as a UserID and multiple GroupIDs for 
each process

User 1

User 2

User 3

/etc/passwd

User

Guest

Administrator

/usr/local/

/tmp/



UNIX file permissions

• Owner, group
• Permissions set by owner / root
• Resolving permissions:
– If user=owner, then owner privileges
• Plus permissions to change ACL

– If user in group, then group privileges
– Otherwise, all privileges

• QUESTION: what do group members get if 
permission is –rw----rw?



Windows File permissions
• ACL = list of Access Control Entries (ACEs)
• Entries {allow,deny} permissions to a user or 

group
– Multiple users or groups vs 1 for Linux

• ACE1: UserA: alllow read
• ACE2: UserB: allow/Write

– Can explicitly deny access
• ACE1: UserA: deny read
• ACE2: Everyone: Read

– Question: How implement
Unix ACLs?


