
CS642:
Computer Security

Lecture 2
Operating System Security

University of Wisconsin CS 642

OS Security Basics

Learning Goals

• Goals for OS security
• OS security mechanisms
• Password authentication
• Access control in Unix

Confidentiality/privacy

Integrity

Authenticity

Availability

1) Economy of mechanism
2) Fail-safe defaults
3) Complete mediation
4) Open design
5) Separation of privilege
6) Least privilege
7) Least common mechanism
8) Psychological acceptability

Security Design Principles

• Saltzer &Schroeder, 1975, as part of Multics

University of Wisconsin CS 642

Economy of mechanism

University of Wisconsin CS 642

Fail-safe defaults

University of Wisconsin CS 642

isAdmin = true;
try {

codeWhichMayFail();
isAdmin = isUserInRole(“Administrator”);

}
catch (Exception ex) {

log.write(ex.toString());
}

(Example from https://www.owasp.org/index.php/Secure_Coding_Principles)

Complete mediation

University of Wisconsin CS 642

Open design
(avoid “security by obscurity”)

University of Wisconsin CS 642

Separation of privilege

University of Wisconsin CS 642

Least privilege

University of Wisconsin CS 642

This%program
can%delete%any
file%you%can.

(Courtesy of UCB CS161 slides)

Least common mechanism
(isolation)

University of Wisconsin CS 642

Psychological acceptability
(consider human factors)

University of Wisconsin CS 642

Principles from 1970’s

• Do you think they are relevant today?
• A bit… abstract
• Recur over and over again

University of Wisconsin CS 642

Limited Direct Execution
• Problem: how does the OS share the CPU between

multiple processes, but remain in control
• Proposal: privileged mode– switching back and forth

between user process and operating system
– How maintain control, so a buggy/malicious process

cannot take over?
• Solution: Limited direct execution
– Let programs run directly on the CPU, but not do

everything
– To start a program, OS jumps to first instruction of

program’s main function (more or less)

1/24/19
© 2004-2013 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

17

Restricted Operations

• Problem: some operations shouldn’t be

available to programs

–Writing data to a disk: how separate users from

each other?

– Decide which memory is accessible

• Solution: modes

1/24/19

© 2004-2013 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael

Swift

18

© 2004-2007 Ed Lazowska, Hank Levy,
Andrea and Remzi Arpaci-Dussea, Michael

Swift

Privileged instructions

• some instructions are restricted to the OS
– known as protected or privileged instructions

• e.g., only the OS can:
– directly access I/O devices (disks, network cards)
• why?

– manipulate memory state management
• Which process can access which memory

– halt instruction
• why?

© 2004-2007 Ed Lazowska, Hank Levy,
Andrea and Remzi Arpaci-Dussea, Michael

Swift

OS protection

• So how does the processor know if a protected
instruction should be executed?
– the architecture must support at least two modes of

operation: kernel mode and user mode
– mode is set by status bit in a protected processor register

• user programs execute in user mode
• OS executes in kernel mode (OS == kernel)

• Protected instructions can only be executed in the
kernel mode
– what happens if user mode executes a protected

instruction?
• CPU enters protected mode automatically on

interrupts/traps/exceptions
– E.g. network packet arrives

© 2004-2007 Ed Lazowska, Hank Levy,
Andrea and Remzi Arpaci-Dussea, Michael

Swift

Crossing protection boundaries
• So how do user programs do something privileged?

– e.g., how can you write to a disk if you can’t do I/O instructions?
• User programs must call an OS procedure

– OS defines a sequence of system calls
– how does the user-mode to kernel-mode transition happen?
– Why limit set of functions that can be called?

• There must be a system call operation, which:
– causes an exception (throws a software interrupt), which

vectors to a kernel handler
– passes a parameter indicating which system call to invoke
– saves caller’s state (regs, mode bit) so they can be restored
– OS must verify caller’s parameters (e.g., pointers)
– must be a way to return to user mode once done

© 2004-2007 Ed Lazowska, Hank Levy,
Andrea and Remzi Arpaci-Dussea, Michael

Swift

A kernel crossing illustrated

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0

© 2004-2007 Ed Lazowska, Hank Levy,
Andrea and Remzi Arpaci-Dussea, Michael

Swift

System call details
• How does the

kernel know which
system call?
– In a register

• Where are the
parameters?
– in a register
– on the stack
– in a memory block

• Limit set of kernel
functions
– System call table

system call handler stub
ENTRY(system_call)

pushl %eax # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl $(nr_syscalls), %eax
jae syscall_badsys
syscall_call:
call *sys_call_table(,%eax,4)
movl %eax,EAX(%esp) # store the return value

<open>: push %ebx
<open+1>: mov 0x10(%esp),%edx
<open+5>: mov 0xc(%esp),%ecx
<open+9>: mov 0x8(%esp),%ebx
<open+13>: mov $0x5,%eax
<open+18>: syscall
<open+20>: pop %ebx
<open+21>: cmp $0xfffff001,%eax
<open+26>: jae 0x2a189d <open+29>
<open+28>: ret

Validating parameters

• Sample calls:
– fd = open(filename, O_RDONLY)
– Result = read(fd, buffer, nbytes)

• What if filename is not null terminated?
– Kernel overwrites local buffer & corrupts

• What if buffer points to a kernel address?
– Kernel overwrites kernel structure with file data

Linux Validation

• Sample calls:
– fd = open(“/tmp/my_data”, O_RDONLY)

long do_sys_open(int dfd,
const char __user *filename,
int flags, umode_t mode)

{
struct filename *tmp;
if (fd)
return fd;

tmp = getname(filename);
…

}

getname_flags(const char __user *filename,
int flags, int *empty)

{
struct filename *result;
char *kname;
int len;
len = strncpy_from_user(kname,

filename,
EMBEDDED_NAME_MAX);

if (unlikely(len < 0)) {
return ERR_PTR(len);

}
...

Safe string copy

Fast string copy

Safe copy to usermode

1/24/19
© 2004-2007 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

29

Authentication
• Establish the identity of user/machine by

– Something you know (password, secret)
– Something you have (credit card, smart card)
– Something you are (retinal scan, fingerprint)

• In the case of an OS this is done during login
– OS wants to know who the user is

• Passwords: secret known only to the subject
– Simplest OS implementation keeps (login, password) pair
– Authenticates user on login by checking the password
– Try to make this scheme as secure as possible!

• Display the password when being typed? (Windows, UNIX)

1/24/19
© 2004-2007 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

30

Online passwords attacks
• Online attacks: system used to verify the guesses

– How someone broke into LBL

– Thwart these attacks:
• limit the number of guesses
• better passwords

Why encrypt passwords?

Example: TENEX page-fault caper
•  TENEX, Secure system done at BBN in the ‘70s
•  Tiger team dispatched to try to break a secure system.
•  Passwords were 8 characters—machine too slow to do

exhaustive search.
•  So, align password on page boundary.

•  Time password check.
•  If process takes a page fault, you can tell how many of the characters

were valid.
•  Turns 528 to a 52 * 8 problem.

4/25/13 CS161 Spring 2013 17

aaaaaaa a b c e d f

fa aaaaaa

fea aaaaa

1/24/19
© 2004-2007 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

31

1/24/19
© 2004-2007 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

32

Better password storage

• store username/encrypted password in file
– Properties of the one-way hash function h:

• h is not invertible: h(m) easy to compute, h-1(m) difficult
• It is hard to find m and m� s.t. h(m) = h(m�)

– Should use standard functions, such as SHA, MD5, etc.

Crypto hash Compare Password
FILE

1/24/19
© 2004-2007 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

33

Offline Attacks
• Previous scheme can be attacked: Dictionary Attack

– Attacker builds dictionary of likely passwords offline
– At leisure, builds hash of all the entries
– Checks file to see if hash matches any entry in password file
– There will be a match unless passwords are truly random
– 20-30% of passwords in UNIX are variants of common words

• Morris, Thompson 1979, Klein 1990, Kabay 1997

• Solutions:
– Passwords should be made secure: increase complexity from 266 to

728

• Length, case, digits, not from dictionary
– Shadow files: move password file to /etc/shadow

• This is accessible only to users with root permissions
– Salt: store (user name, salt, E(password+salt))

• Simple dictionary attack will not work. Search space is more.

Salting Example

• If the hacker guesses Dog, he has to try Dog0001, …

1/24/19
© 2004-2007 Ed Lazowska, Hank Levy,

Andrea and Remzi Arpaci-Dussea, Michael
Swift

34

Access controls

• Basic question: who gets access
to what for what purpose?
–Who = subjects. Users, programs
–What = objects. Files, other

programs, OS objects
– Purpose = read, write, search,

execute, change access

Access control matrix

file 1 file 2 … file n

user 1 read, write read,
write, own

read

user 2

…

user m append read,
execute

read,write,
own

User i has permissions for file j as indicated in cell [i,j]

Due originally to Lampson in 1971

Subjects

Objects

Access control in Real world

• Guard: something that checks for
access

• Approach 1: Check a list of allowed
people

• Approach 2: Check if person has a key
or ticket

This Photo by Unknown Author is
licensed under CC BY-SA-NC

http://marnieburkman.blogspot.com/2012/10/the-body-both-lock-key-for-healing-from.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Access control implementation
paradigms

file 1 file 2 … file n

user 1 read,
write

read,
write,
own

read

user 2

…

user m append read,
execute

read,wr
ite,own

(1) Access control lists

Column stored with file
File 1: user1: RW, user m:A

(2) Capabilities
Row stored for each user
User 1: file 1:RW, file
2:RWO, file n:R

How? Unforgeable
tickets given
to user

ACLs compared to Capabilities

ACLs requires
authenticating user

Token-based approach
avoids need for auth

Tokens can be passed
around

Reference monitor must
manage tokens

Processes must be given
permissions

Reference monitor must
protect permission setting

UNIX-style file system

UNIX-style file system ACLs

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

Owner (swift)
Group (staff)

Unix File system capabilities

• File descriptors are
capabilities
– Allow access to file

even if ACL changes
– Can be passed to other

processes/users

int fd = open(“~/class/exam.txt”);
read(fd,buffer,1024);

void send_fd(int socket, int fd) {
struct msghdr msg = {0};
msg.msg_control = buf; msg.msg_controllen

= sizeof buf;
struct cmsghdr * cmsg =

CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof fd);
*((int *) CMSG_DATA(cmsg)) = fd;
msg.msg_controllen = cmsg->cmsg_len; //
sendmsg(socket, &msg, 0);

}

Delegation

• Need to give a process, other user access

• With ACLs,
– Option 1: run a new process, inherits user’s

permissions
– Option 2: change ACL to grant access to another

user
• What if it is not your file?

• With, pass around token

Revocation
• Take away access from user or process
• In ACL,
– remove user from list

• In Capabilities
– Option 1: track location of all capabilities, find and delete
– Option 2: make capabilities indirect: point to an object that

can be deleted, not to shared object directly

Who uses capabilities?

• Research operating systems:
– Eros, ExoKernel, Barrelfish, Singularity

• Microkernels
–Mach, Google Fuschia

• Mainstream OS (somewhere)
– Use ACL when opening object, return a capability

for faster access later
• Linux/MacOS: file descriptors
• Windows: handles

UNIX-style file system ACLs

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

Owner (swift)
Group (staff)

Roles (groups)

Group is a set of users

Administrator User Guest

Simplifies assignment of permissions at scale
Implemented as a UserID and multiple GroupIDs for
each process

User 1

User 2

User 3

/etc/passwd

User

Guest

Administrator

/usr/local/

/tmp/

UNIX file permissions

• Owner, group
• Permissions set by owner / root
• Resolving permissions:
– If user=owner, then owner privileges
• Plus permissions to change ACL

– If user in group, then group privileges
– Otherwise, all privileges

• QUESTION: what do group members get if
permission is –rw----rw?

Windows File permissions
• ACL = list of Access Control Entries (ACEs)
• Entries {allow,deny} permissions to a user or

group
– Multiple users or groups vs 1 for Linux

• ACE1: UserA: alllow read
• ACE2: UserB: allow/Write

– Can explicitly deny access
• ACE1: UserA: deny read
• ACE2: Everyone: Read

– Question: How implement
Unix ACLs?

