Useful Things in the C Programming Environment

Remzi Arpaci-Dusseau

Introduction

This is a very brief document to familiarize you with the lwasdf the C programming environment om-based
systems. It is not comprehensive or detailed, but shoutdjjus you enough to get you going.

A couple of general points of advice about programming: if yant to become an expert programmer, you heed
to master more than just the syntax of a language. Specifigall shouldknow your tools, know your libraries,
andknow your documentation. The tools that are relevant to C and C++ compilationgare, gdb, and maybé d.
There are tons of library routines that are also availablgoto, but fortunately a lot of functionality is included in
I i bc, which is linked with all C and C++ programs by default — aluyiweed to do is include the right header files.
Finally, knowing how to find the library routines you neexty(, learning to find and read man pages) is a skill worth
acquiring. We'll talk about each of these in more detaillate.

Like (almost) everything worth doing in life, becoming arpext in these domains takes time, but the result of
spending the time up-front will definitely be well worth thiost.

A Simple C Program

We'll start with a simple C program, perhaps saved in the fil.t”. Unlike Java, there is no connection between the
file name and the contents of the file; because of that, jusfaissecommon sense in naming files.

/* header files go up here -- specifies headers needed for routines */
/* note that C comments are enclosed within a sl ash
and a star, and may wap over lines */
/1 if you use gcc, two slashes will work too
#i ncl ude <stdio. h>

/* main returns an integer */

int
mai n(int argc, char *argv[])
{
[* printf is our output function; by default, wites to standard out */
[* printf returns an integer, but we ignore it here */
printf(‘‘hello, world\n);
/* return O to indicate all went well */
return(0);
}

The first line specifies a file to include, in this cagedi 0. h, which “prototypes” many of the commonly used
input/output routines; the one we are interested prisnt f . When you use th#i ncl ude directive, you are telling
the C preprocessocpp) to find a particular file and to insert it directly into yourdmat the spot of th&i ncl ude.

By default,cpp will lookin / usr /i ncl ude/ to try to find the file.

The next part specifies the signature of the n routine, namely that it returns an integém¢), and will be
called with two arguments, an integar gc, which is a count of the number of arguments on the commased éind
an array of pointers to characters, each of which containra fvom the command line, and the last of which is null.
There will be more on pointers and arrays below.

The program then simply prints the string “hello, world” aedl/ances the output stream to the next line, courtesy
of the backslash followed by an “n” at the end of the cajptad nt f . Afterwards, the program completes by returning
a value, which is passed back to the shell that executed tgggm. A script or the user at the terminal could check
this value (in many shells, it is stored in teéat us variable), to see whether the program exited cleanly or aiith
error.

Compilation and Execution

We now learn how to compile the program. Note that we will gse as our example, though on some platforms you
may be able to use the native compilec,
At the shell prompt, you just type:

pronpt > gcc hw. ¢

gcc is not really the compiler, but rather the program called enfipiler driver”; thus it coordinates the many
steps of the compilation. Usually there are four to five stdfisst, gcc will executecpp, the C pre-processor, to
process certain directives (such#def i ne and#i ncl ude). cpp is just a source-to-source translator, so its end-
product is still just source code. Then the real compilatidih begin, usually a command callegc1. This will
transform source-level C code into low-level assembly ¢epecific to the host machine. The assembatewill then
be executed, generating object code (bits and things thetiimas can really understand), and finally the link-edibor (
linker) I d will put it all together into a final executable program. Forately(!), for most purposes, you can blithely
be unaware of howycc works, and just use it with the proper flags.

The result of your compilation above is an executable, namexlit . To then run the program, we simply type:

pronpt> ./a.out

When we run this programy gc is equaltdl, ar gv[0] isthe string / a. out , andar gv[1] is null, indicating
the end of the array.

Useful Flags

Before moving on to the C language, we'll first point out soreeful compilation flags fogcc.

prompt> gcc -o hw hw.c # -0 lets you specify the executabl e nanme
prompt> gcc -Wall hw.c # -Wall gives nuch better warnings
pronpt> gcc -g hw. c # use -g to enabl e debugging with gdb
pronpt> gcc -O hw. c # use -Oto turn on optimnm zation

Of course, you may combine these flags as you seeit gcc -o hw -g -Wal |l hw. c). Of these flags,
you should always useWal | , which gives you lots of extra warnings about possible rkiesta Don't ignore the
warnings! Instead, fix them and thus make them go away.

Linking with Libraries

Sometimes, you may want to use a library routine in your paogrBecause so many routines are available in the C
library (which is automatically linked with every programa)l you usually have to do is find the rigti ncl ude file.
The best way to do that is via tan pages.

For example, let's say you want to use ther k system call By typingman f or k at the prompt, you will get
back a “manual” page describing hdwer k works. At the very top will be a short code snippet, and thditteil you
which files you need té&i ncl ude in your program in order to get it to compile. In the casd of k, you need to
#i ncl ude bothsys/t ypes. h anduni st d. h.

However, some library routines do not reside in the C librang therefore you will have to do a little more work.
For example, the math library has many useful routines, ssaines, cosines, tangents, and the like. If you want to

INote thatf or k is a system call, and not just a library routine. However, Ghiibrary provides C wrappers for all the system calls, each o
which simply trap into the operating system

include the routing an in our code, you should again first check the man page. At fheftthe Solaris man page for
t an, you will see the following two lines:

cc|[flag ...] file ... -ImJ[library ...]
#i ncl ude <mat h. h>

The second line you already should understand — you negdricl ude the math library, which is found in the
standard placd (usr /i ncl ude/ mat h. h). However, what the first line is telling you is how to “linkbyir program
with the math library. A number of useful libraries exist azah be linked with; many of those reside/insr/ | i b.

In this case, that is where the math library resides.

There are two types of libraries: statically-linked libesr (which end in a), and dynamically-linked ones (which
end in. so). Statically-linked libraries are combined directly intour executable; that is, the low-level code for the
library is inserted into your executable by the linker, ardults in a much larger binary object. Dynamic linking
improves on this by just including the reference to a libfiaryour program executable; when the programis run, the
system dynamically links in the library. This method is greéd over the static approach because it saves disk space
(no unnecessarily large executables are made) and alloplieaons to share library code and static data when in
memory. In the case of the math library, both static and dyoaersions are available; that static library is called
fusr/lib/libmaand/ usr/lib/libm so.Asyoumighthave figured out, the standard place to findfiesa
in UNIX systemsigusr/lib/.

In any case, to link with the math library, you need to spettiglibrary to the link-editor; this can be achieved by
invoking gcc with the right flags.

prompt> gcc -0 hw hw.c -Vall -Im

The- | XXXflags tells the linker to look fari bXXX. so orl i bXXX. a, probably in that order. If for some reason
you insist on the static library over the dynamic one, therariother flag you can add — see you if you can find out
what it is.

One final note: if you want the compiler to search for headesesdifferent path than the usual places, or want it to
link with libraries that you specify, you can use thie/ sear ch/ f or / header s/ her e/ and- L/ | ook/for/libs/ here
flags, respectively. Thel flag should go on the compile line, and the flag on the link line.

Separate Compilation

Once a program starts to get large enough, you may want tdtsplio separate files, compiling each separately, and
then link them together. For example, say you have two files,c andhel per. ¢, and you wish to compile them
individually, and then link them together.

note that we are using -Wall for warnings and -O for optimnzation
prompt> gcc -Wall -O-c hw.c

prompt> gcc -Wall -O -c helper.c

pronmpt> gcc -0 hw hw. o helper.o -Im

The- c flag tells the compiler just to produce an object file — in thase, files calletiw. o andhel per . 0. These
files are not executables, but just machine-level repratient of the code within each source file. To combine the
object files into an executable, you have to “link” them tdgget this is accomplished with the third lingdc - o
hw hw. o hel per. 0). In this casegcc sees that the input files specified are not source file, put instead are
object files (0), and therefore skips right to the last step and invokedithedditor| d to link them together into a
single executable. Because of its function, this line igmftalled the “link line”, and would be where you specify
link-specific commands such ak m Analagously, flags such as\al | and- Oare only needed in the compile phase,
and therefore need not be included on the link line.

Of course, you could just specify all the C source files on glsitine togcc (gcc -Wall -O -0 hw hw. c
hel per. c), butthis requires the system to recompile every source fileg a time-consuming process. By compiling
each individually, you can save time by only recompilingg@diles that have changed during your editing, and thus
increase your productivity. This process is best managezhbyher progranmake, which we now describe.

Makefiles

The programmrak e lets you automate much of your build process, and is thus@attpiimportant tool for any serious
program (and programmer). Let’s take a look at a simple exarspved in a file calletakef i | e.

hw. hw. o hel per.o
gcc -0 hw hw.o helper.o -Im

hw. o: hw. c
gcc -O-wWall -c hwec

hel per.o: hel per.c
gcc -O-Wall -c helper.c

cl ean:
rm-f hw o helper.o hw

To build your program, now all you have to do is type:
pronpt > make

This will (by default) look forMakef i | e or makef i | e, and use that as its input (you can specify a different makefith a
flag; read the man pages to find out which). The gnu versioraéfe, gnake, is more fully featured than traditional make, so we
will focus upon it for the rest of this discussion (though widl use the two terms interchangeably). Most of these notedased
on thegnake info page; to see how to find those pages, see the Documensatition below.

Makefiles are based on rules, which are used to decide whds ne&appen. The general form of a rule:

target: prerequisitel prerequisite2 ...
commandl
command?2

A “target” is usually the name of a file that is generated by @prm; examples of targets are executable or object files. A
target can also be the name of an action to carry out, suchess'dn our example.

A “prerequisite” is a file that is used as input to create thgeta A target often depends on several files. For examplayitd
the executabléw, we need two object files to be built firdtw. 0 andhel per. o.

Finally, a “command” is an action thatake carries out. A rule may have more than one command, each awitdine.
Important: You have to put a single tab character at the beginning ofyem@nmand line! If you just put spacasake will print
out some obscure error message and exit.

Usually a command is in a rule with prerequisites and seivesdate a target file if any of the prerequisites change. Mewe
the rule that specifies commands for the target need not havequisites. For example, the rule containing the deletencand
associated with the target ‘clean’ does not have prereqsisi

Going back to our example, when make is executed, it rougbiksvlike this: First, it comes to the tardgetv, and it realizes
that that to build it, it must have two prerequisitbsy. o andhel per . o. Thus,hwdepends on those two object files. Make then
will examine each of those targets. In examimg. o, it will see that it depends ohw. c. Here is the key: ihw. ¢ has been
modified more recently thahw. o has been createdmke will know that hw. o is out of date and should be generated anew;
in that case, it will execute the command ligesc - O -Wal | - ¢ hw. ¢, which generatebw. 0. Thus, if you are compiling
a large programmake will know which object files need to be re-generated basedheir tiependencies, and will only do the
necessary amount of work to recreate the executable. Algothathw. o will be created in the case that it does not exist at all.

Continuing alonghel per. o may also be regenerated or created, based on the sameaageatefined above. When both of
the object files have been created, make is now ready to exdmitommand to create the final executable, and goes bacloaad
so:gcc -0 hw hw.o helper.o -Im

Up until now, we've been ignoring thel ean target in the makefile. To use it, you have to ask for it exjlickype

prompt > make cl ean

This will execute the command on the command line. Becawse thre no prerequisites for thé ean target, typingmrake
cl ean will always result in the command being executed. In thisec#isec| ean target is used to remove the object files and
executable. It is handy if you want to rebuild the entire pamg from scratch.

Now you might be thinking, “well, this seems ok, but these efdés sure are cumbersome!” And you'd be right — if they
always had to be written like this. Fortunately, there aretaf short cuts that makeake even easier to use. For example, this
makefiles has the same functionality but is a little nicerge:u

specify all source files here
SRCS = hw.c hel per.c

specify target here (name of executable)
TARG = hw

specify conpiler, conpile flags, and needed |ibs

CC = gcc
OPTS = -vall -0
LIBS = -Im

this translates .c files in src list to .0’s
OBJS = $(SRCS:.c=.0)

all is not really needed, but is used to generate the target
all: $(TARG

this generates the target executable
$(TARG : $(0BJIS)
$(CO -0 $(TARG $(0BIS) $(LIBS)

this is a generic rule for .o files
%o0: %c
$(CC) $(OPTS) -c $< -0 $@

and finally, a clean line
cl ean:
rm-f $(O0BIS) $(TARG

Though we won't go into the details of make syntax, as you e this makefile can make your life somewhat easier. For
example, it allows you to easily add new source files into ymuild, simply by adding them to theRCS variable at the top of the
makefile. You can also easily change the name of the exeeutghthanging th& ARG line, and the compiler, flags, and library
specifications are all easily modified.

One final word aboutrak e: figuring out a target’s prerequisites is not always trivéslpecially in large and complex programs.
Not surprisingly, there is another tool that helps with tleslledmakedepend. Read aboutrakedepend on your own and see
if you can incorporate it into a makefile.

Debugging

Finally, after you have a good build environment, and a ablyecompiled program, you may find that your program is buggy
One way to fix the problem(s) is to think really hard — this noetlis sometimes successful, but often not. The problem isla la
of information; you just don't know exactly what is going on within the pragr, and therefore cannot figure out why it is not
behaving as expected. Fortunately, there is some help; the GNU debugger.

Let’s take the following buggy code, saved in the file “bugtlyand compiled into the executable “buggy.”

#i ncl ude <stdi o. h>

struct Data {

int x;
}
int
mai n(int argc, char *argv[])
{
struct Data *p = NULL,
printf("%\n", p->x);
}

In this example, the main program dereferences the varabéfore when it is NULL, which will lead to a segmentation faul
Of course, this problem should be easy to fix by inspectiohjrba more complex program, finding such a problem is not adway
easy.

To prepare yourself for a debugging session, recompile pmgram and make sure to pass thgeflag to each compile line.
This includes extra debugging information in your execlaabat will be useful during your debugging session. Alsap’tturn
on optimization { O); though this may work, it may also lead to confusion durietpubging.

After re-compiling with- g, you are ready to use the debugger. Firggdp at the command prompt as follows:

pronpt > gdb buggy

This puts you inside an interactive session with the debuddete that you can also use the debugger to examine “coes’ fil
that were produced during bad runs, or to attach to an alraatying program; read the documentation to learn moretabéu
Once inside, you may see something like this:

pronpt > gdb buggy

G\U gdb 5.0

Copyri ght 2000 Free Software Foundation, Inc.
[stuff del eted]

(gdb)

The first thing you might want to do is to go ahead and run thgnam. To do this, simply type “run” at gdb command prompt.
In this case, this is what you might see:

(gdb) run
Starting program buggy

Programrecei ved signal SI GSEGY, Segnentation fault.
0x8048433 in main (argc=1, argv=0xbffff844) at buggy.cc: 19
19 printf("%\n", p->x);

As you can see from the example, in this cag#h immediately pinpoints where the problem occurred; a “segat®n fault”
was generated at the line where we tried to dereferpn@is just means that we accessed some memory that we wsupposed
to access. At this point, the astute programmer can exarh@&edde, and say “aha! it must be tipatloes not point to anything
valid!”, and then go ahead and fix the problem.

However, if you didn't know what was going on, you might waateéxamine some variablegdb allows you to do this
interactively during the debug session.

(gdb) print p
1 = (Data *) 0xO

By using the print primitive, we can examipe and see both that it is a pointer to a struct of type Data, batlitis currently
set to NULL (0x0).

Finally, you can also set breakpoints within your progranhawe the debugger stop the program at a certain routiner Afte
doing this, it is often useful to step through the executimme(line at a time), and see what is happening.

(gdb) break nmain

Breakpoint 1 at 0x8048426: file buggy.cc, line 17.
(gdb) run

Starting program /hones/ hacker/buggy

Breakpoint 1, main (argc=1, argv=0xbffff844) at buggy.cc: 17

17 struct Data *p = NULL;
(gdb) next

19 printf("%\n", p->x);
(gdb)

Programrecei ved signal SI GSEGY, Segnentation fault.
0x8048433 in main (argc=1, argv=0xbffff844) at buggy.cc:19
19 printf("%\n", p->x);

In the example above, a breakpoint is set at the main() reptiirus, when we run the program, the debugger almost imnedgia
stops execution at main. At that point in the example, a “hestnmand is issued, which executes the next source-leveirand.
Both “next” and “step” are useful ways to advance throughagmm — read about them in the documentation for more détails

This discussion really does not dalb justice; it is a rich and flexible debugging tool, with manymadeatures than can be
described in the limited space here. Read more about it onown and become an expert in your copious spare time.

Documentation

Man Pages

To learn a lot more about all of these things, you have to dothirigs: the first is to use these tools, and the second is tb rea
more about them on your own. One way to find out more agouat, gmeke, andgdb is to read their man pages; typan gcc,
man grmeke, orman gdb at your command prompt. You can also usn - k to search the man pages for keywords, though
that doesn't always work as well as it might.

One tricky thing about man pages: typing “man XXX" may notulésn the thing you want, if there is more than one thing
called XXX. For example, if you are looking for the kill() sgsn call man page, and if you just type “man kill” at the promymtu
will get the wrong man page(!), because there is a commar@ddiogram called kill. Man pages are divided into “sectipaad
by default, man will return the man page in the lowest sedtian it finds, which in this case is section 1. Note that you tedin
which man page you got by looking at the top of the page: if yeri“&ill(2)", you know you are in the right man page. Type “man
man” to learn more about what is stored in each of the diffeseations of the man pages. Also note that “man -a kill” candesl
to cycle through all of the different man pages named “kill”.

Man pages are useful for finding out a number of things. Ini@aetr, you will often want to look up what arguments to pass
to a library call, or what header files need to be included gaiibrary call. All of this should be available in the man pagor
example, if you look up the “open” system call, you will see:

SYNCPSI S
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i nclude <fcntl. h>

int open(const char *path, int oflag, /* node_t node */...);

That tells you to include the headers “sys/types.h”, “ag$/8”, and “fcntl.h” in order to use the open call. It alséige/ou
about the parameters to pass to open, namely a string caléel"; and integer flag “oflag”, and an optional argument tecify
the mode of the file. If there were any libraries you needechtowith to use the call, it would tell you that here too.

Man pages require some effort to use effectively. They aenadivided into a number of standard sections. The main body
will describe how you can pass different parameters in améave the function behave differently.

One particularly useful section is called the “RETURN VALBBpart of the man page, and it tells you what the function will
return under success or failure. From the “open” man pagmaga

RETURN VALUES
Upon successful conpletion, the open() function opens the
file and return a non-negative integer representing the
| owest nunbered unused file descriptor. Oherwise, -1 is
returned, errno is set to indicate the error, and no files
are created or nodified.

Thus, by checking what open returns, you can see if the opsgeded or not. If it didn’t, open (and many standard library
routines) will set a global variable calledrno to a value to tell you about the error. See the “ERRORS” sedtiomore details.

Another thing | find myself doing is looking for the definitiai a structure that is not specified in the man page itself. For
example, the man page for clagettime() has the following synopsis:

SYNOPSI S
cc [flag...] file... -lrt [library...]
#i ncl ude <tine. h>
int clock_gettime(clockid_ t clock_id, struct tinmespec *tp);

2In particular, you can use the interactive “help” commandevtiebugging withgdb.

One thing to note is that in the first line of the synopsis, listgou that to use clocigettime(), you must link with the
library called “librt”, or the real-time library. Furtheyou can see that the time is filled into a 'struct timespect,the man page
does not tell you what fields that struct has! FrustratingusTlyou must hunt for it. All include files are found under tlirectory
/usr/include, and thus you can use atool like “grep” to lomkif. For example, | might type “grep 'struct timespec’ fusclude/*.h”
to look for the defintion of the structure in all files that enidha/.h” in /usr/include. Unfortunately, that won’t work glzause in this
case, the definition is in a file “/usr/include/sys/type&32Thus, a search like this one: “grep ’struct timespect/aslude/*/*.h"
would be successful. Yes, this is painful.

A better way to do this is to use a tool at your disposal, thepiten Write a program that includes the header “time.ht'sle
say called “main.c”. Then, instead of compiling it, use thenpiler to invoke the preprocesser. The preprocessor gsesall the
directives in your file, such adef i ne commands anéi ncl ude commands. To do this, type “gcc -E main.c”. The result of
this is a C file that has all of the needed structures and pqéstin it, including the definition of the timespec struct.

Info Pages

Also quite useful in the hunt for documentation are the “ipmes”, which provide much more detailed documentation anym
GNU tools. You can access the info pages by running the pnognaf o, or via emacs, the preferred editor of hackers, by
executingMet a- x i nf o. A program likegcc has hundreds of flags, and some of them are surprisingly Iusefmow about.
gmake has many more features that will improve your build envirenin Andgdb is quite a sophisticated debugger. Read the
man and info pages, try out features that you hadn't triedreefand become a power user of your programming tools.

Suggested Readings

Other than the man and info pages, there are a number of umefls out there. Note that a lot of this information is avaisfor
free on-line; however, sometimes having something in bookfseems to make it easier to learn. Also, always look foredlR
books on topics you are interested in; | have found them tanifermly of high quality.

e The C Programming Language, by Brian Kernighan and Dennis Ritchie. Thigle C book to have.
e Managing Projects with make, by Andrew Oram and Steve Talbott. A reasonable and shok boanake.

e Debugging with GDB: The GNU Source-Level Debugger, by Richard M. Stallman, Roland H. Pesch. A little book omgsi
GDB.

e Advanced Programming in the UNIX Environment, by W. Richard Stevens. Stevens writes excellent books tlieds a
must for Unix hackers. He also has an excellent set of bookEQ®/IP and Sockets programming.

