
Useful Things in the C Programming Environment

Remzi Arpaci-Dusseau

Introduction

This is a very brief document to familiarize you with the basics of the C programming environment on UNIX -based
systems. It is not comprehensive or detailed, but should just give you enough to get you going.

A couple of general points of advice about programming: if you want to become an expert programmer, you need
to master more than just the syntax of a language. Specifically, you shouldknow your tools, know your libraries ,
andknow your documentation. The tools that are relevant to C and C++ compilation aregcc, gdb, and maybeld.
There are tons of library routines that are also available toyou, but fortunately a lot of functionality is included in
libc, which is linked with all C and C++ programs by default – all you need to do is include the right header files.
Finally, knowing how to find the library routines you need (e.g., learning to find and read man pages) is a skill worth
acquiring. We’ll talk about each of these in more detail later on.

Like (almost) everything worth doing in life, becoming an expert in these domains takes time, but the result of
spending the time up-front will definitely be well worth the effort.

A Simple C Program

We’ll start with a simple C program, perhaps saved in the file “hw.c”. Unlike Java, there is no connection between the
file name and the contents of the file; because of that, just useyour common sense in naming files.

/* header files go up here -- specifies headers needed for routines */
/* note that C comments are enclosed within a slash

and a star, and may wrap over lines */
// if you use gcc, two slashes will work too
#include <stdio.h>

/* main returns an integer */
int
main(int argc, char *argv[])
{

/* printf is our output function; by default, writes to standard out */
/* printf returns an integer, but we ignore it here */
printf(‘‘hello, world\n’’);

/* return 0 to indicate all went well */
return(0);

}

The first line specifies a file to include, in this casestdio.h, which “prototypes” many of the commonly used
input/output routines; the one we are interested in isprintf. When you use the#include directive, you are telling
the C preprocessor (cpp) to find a particular file and to insert it directly into your code at the spot of the#include.
By default,cpp will look in /usr/include/ to try to find the file.

The next part specifies the signature of themain routine, namely that it returns an integer (int), and will be
called with two arguments, an integerargc, which is a count of the number of arguments on the command line, and
an array of pointers to characters, each of which contain a word from the command line, and the last of which is null.
There will be more on pointers and arrays below.

1

The program then simply prints the string “hello, world” andadvances the output stream to the next line, courtesy
of the backslash followed by an “n” at the end of the call toprintf. Afterwards, the program completes by returning
a value, which is passed back to the shell that executed the program. A script or the user at the terminal could check
this value (in many shells, it is stored in thestatus variable), to see whether the program exited cleanly or withan
error.

Compilation and Execution

We now learn how to compile the program. Note that we will usegcc as our example, though on some platforms you
may be able to use the native compiler,cc.

At the shell prompt, you just type:

prompt> gcc hw.c

gcc is not really the compiler, but rather the program called a “compiler driver”; thus it coordinates the many
steps of the compilation. Usually there are four to five steps. First,gcc will executecpp, the C pre-processor, to
process certain directives (such as#define and#include). cpp is just a source-to-source translator, so its end-
product is still just source code. Then the real compilationwill begin, usually a command calledcc1. This will
transform source-level C code into low-level assembly code, specific to the host machine. The assembleras will then
be executed, generating object code (bits and things that machines can really understand), and finally the link-editor (or
linker) ld will put it all together into a final executable program. Fortunately(!), for most purposes, you can blithely
be unaware of howgcc works, and just use it with the proper flags.

The result of your compilation above is an executable, nameda.out. To then run the program, we simply type:

prompt> ./a.out

When we run this program,argc is equal to1,argv[0] is the string./a.out, andargv[1] is null, indicating
the end of the array.

Useful Flags

Before moving on to the C language, we’ll first point out some useful compilation flags forgcc.

prompt> gcc -o hw hw.c # -o lets you specify the executable name
prompt> gcc -Wall hw.c # -Wall gives much better warnings
prompt> gcc -g hw.c # use -g to enable debugging with gdb
prompt> gcc -O hw.c # use -O to turn on optimization

Of course, you may combine these flags as you see fit (e.g., gcc -o hw -g -Wall hw.c). Of these flags,
you should always use-Wall, which gives you lots of extra warnings about possible mistakes. Don’t ignore the
warnings! Instead, fix them and thus make them go away.

Linking with Libraries

Sometimes, you may want to use a library routine in your program. Because so many routines are available in the C
library (which is automatically linked with every program), all you usually have to do is find the right#include file.
The best way to do that is via theman pages.

For example, let’s say you want to use thefork system call.1 By typingman fork at the prompt, you will get
back a “manual” page describing howfork works. At the very top will be a short code snippet, and that will tell you
which files you need to#include in your program in order to get it to compile. In the case offork, you need to
#include bothsys/types.h andunistd.h.

However, some library routines do not reside in the C library, and therefore you will have to do a little more work.
For example, the math library has many useful routines, suchas sines, cosines, tangents, and the like. If you want to

1Note thatfork is a system call, and not just a library routine. However, theC library provides C wrappers for all the system calls, each of
which simply trap into the operating system

2

include the routinetan in our code, you should again first check the man page. At the top of the Solaris man page for
tan, you will see the following two lines:

cc [flag ...] file ... -lm [library ...]
#include <math.h>

The second line you already should understand – you need to#include the math library, which is found in the
standard place (/usr/include/math.h). However, what the first line is telling you is how to “link” your program
with the math library. A number of useful libraries exist andcan be linked with; many of those reside in/usr/lib.
In this case, that is where the math library resides.

There are two types of libraries: statically-linked libraries (which end in.a), and dynamically-linked ones (which
end in.so). Statically-linked libraries are combined directly intoyour executable; that is, the low-level code for the
library is inserted into your executable by the linker, and results in a much larger binary object. Dynamic linking
improves on this by just including the reference to a libraryin your program executable; when the program is run, the
system dynamically links in the library. This method is preferred over the static approach because it saves disk space
(no unnecessarily large executables are made) and allows applications to share library code and static data when in
memory. In the case of the math library, both static and dynamic versions are available; that static library is called
/usr/lib/libm.a and/usr/lib/libm.so. As you might have figured out, the standard place to find libraries
in UNIX systems is/usr/lib/.

In any case, to link with the math library, you need to specifythe library to the link-editor; this can be achieved by
invokinggcc with the right flags.

prompt> gcc -o hw hw.c -Wall -lm

The-lXXX flags tells the linker to look forlibXXX.so orlibXXX.a, probably in that order. If for some reason
you insist on the static library over the dynamic one, there is another flag you can add – see you if you can find out
what it is.

One final note: if you want the compiler to search for headers in a different path than the usual places, or want it to
link with libraries that you specify, you can use the-I/search/for/headers/here/and-L/look/for/libs/here
flags, respectively. The-I flag should go on the compile line, and the-L flag on the link line.

Separate Compilation

Once a program starts to get large enough, you may want to split it into separate files, compiling each separately, and
then link them together. For example, say you have two files,hw.c andhelper.c, and you wish to compile them
individually, and then link them together.

note that we are using -Wall for warnings and -O for optimization
prompt> gcc -Wall -O -c hw.c
prompt> gcc -Wall -O -c helper.c
prompt> gcc -o hw hw.o helper.o -lm

The-c flag tells the compiler just to produce an object file – in this case, files calledhw.o andhelper.o. These
files are not executables, but just machine-level representations of the code within each source file. To combine the
object files into an executable, you have to “link” them together; this is accomplished with the third line (gcc -o
hw hw.o helper.o). In this case,gcc sees that the input files specified are not source files (.c), but instead are
object files (.o), and therefore skips right to the last step and invoked the link-editorld to link them together into a
single executable. Because of its function, this line is often called the “link line”, and would be where you specify
link-specific commands such as-lm. Analagously, flags such as-Wall and-O are only needed in the compile phase,
and therefore need not be included on the link line.

Of course, you could just specify all the C source files on a single line togcc (gcc -Wall -O -o hw hw.c
helper.c), but this requires the system to recompile every source code file, a time-consuming process. By compiling
each individually, you can save time by only recompiling those files that have changed during your editing, and thus
increase your productivity. This process is best managed byanother program,make, which we now describe.

3

Makefiles

The programmake lets you automate much of your build process, and is thus a crucially important tool for any serious
program (and programmer). Let’s take a look at a simple example, saved in a file calledMakefile.

hw: hw.o helper.o
gcc -o hw hw.o helper.o -lm

hw.o: hw.c
gcc -O -Wall -c hw.c

helper.o: helper.c
gcc -O -Wall -c helper.c

clean:
rm -f hw.o helper.o hw

To build your program, now all you have to do is type:

prompt> make

This will (by default) look forMakefile or makefile, and use that as its input (you can specify a different makefile with a
flag; read the man pages to find out which). The gnu version ofmake, gmake, is more fully featured than traditional make, so we
will focus upon it for the rest of this discussion (though we will use the two terms interchangeably). Most of these notes are based
on thegmake info page; to see how to find those pages, see the Documentation section below.

Makefiles are based on rules, which are used to decide what needs to happen. The general form of a rule:

target: prerequisite1 prerequisite2 ...
command1
command2
...

A “target” is usually the name of a file that is generated by a program; examples of targets are executable or object files. A
target can also be the name of an action to carry out, such as ‘clean’ in our example.

A “prerequisite” is a file that is used as input to create the target. A target often depends on several files. For example, tobuild
the executablehw, we need two object files to be built first:hw.o andhelper.o.

Finally, a “command” is an action thatmake carries out. A rule may have more than one command, each on itsown line.
Important: You have to put a single tab character at the beginning of every command line! If you just put spaces,make will print
out some obscure error message and exit.

Usually a command is in a rule with prerequisites and serves to create a target file if any of the prerequisites change. However,
the rule that specifies commands for the target need not have prerequisites. For example, the rule containing the delete command
associated with the target ‘clean’ does not have prerequisites.

Going back to our example, when make is executed, it roughly works like this: First, it comes to the targethw, and it realizes
that that to build it, it must have two prerequisites,hw.o andhelper.o. Thus,hw depends on those two object files. Make then
will examine each of those targets. In examinghw.o, it will see that it depends onhw.c. Here is the key: ifhw.c has been
modified more recently thanhw.o has been created,make will know that hw.o is out of date and should be generated anew;
in that case, it will execute the command line,gcc -O -Wall -c hw.c, which generateshw.o. Thus, if you are compiling
a large program,make will know which object files need to be re-generated based on their dependencies, and will only do the
necessary amount of work to recreate the executable. Also note thathw.o will be created in the case that it does not exist at all.

Continuing along,helper.o may also be regenerated or created, based on the same criteria as defined above. When both of
the object files have been created, make is now ready to execute the command to create the final executable, and goes back anddoes
so:gcc -o hw hw.o helper.o -lm.

Up until now, we’ve been ignoring theclean target in the makefile. To use it, you have to ask for it explictly. Type

prompt> make clean

This will execute the command on the command line. Because there are no prerequisites for theclean target, typingmake
clean will always result in the command being executed. In this case, theclean target is used to remove the object files and
executable. It is handy if you want to rebuild the entire program from scratch.

Now you might be thinking, “well, this seems ok, but these makefiles sure are cumbersome!” And you’d be right – if they
always had to be written like this. Fortunately, there are a lot of short cuts that makemake even easier to use. For example, this
makefiles has the same functionality but is a little nicer to use:

4

specify all source files here
SRCS = hw.c helper.c

specify target here (name of executable)
TARG = hw

specify compiler, compile flags, and needed libs
CC = gcc
OPTS = -Wall -O
LIBS = -lm

this translates .c files in src list to .o’s
OBJS = $(SRCS:.c=.o)

all is not really needed, but is used to generate the target
all: $(TARG)

this generates the target executable
$(TARG): $(OBJS)

$(CC) -o $(TARG) $(OBJS) $(LIBS)

this is a generic rule for .o files
%.o: %.c

$(CC) $(OPTS) -c $< -o $@

and finally, a clean line
clean:

rm -f $(OBJS) $(TARG)

Though we won’t go into the details of make syntax, as you can see, this makefile can make your life somewhat easier. For
example, it allows you to easily add new source files into yourbuild, simply by adding them to theSRCS variable at the top of the
makefile. You can also easily change the name of the executable by changing theTARG line, and the compiler, flags, and library
specifications are all easily modified.

One final word aboutmake: figuring out a target’s prerequisites is not always trivial, especially in large and complex programs.
Not surprisingly, there is another tool that helps with this, calledmakedepend. Read aboutmakedepend on your own and see
if you can incorporate it into a makefile.

Debugging
Finally, after you have a good build environment, and a correctly compiled program, you may find that your program is buggy.
One way to fix the problem(s) is to think really hard – this method is sometimes successful, but often not. The problem is a lack
of information; you just don’t know exactly what is going on within the program, and therefore cannot figure out why it is not
behaving as expected. Fortunately, there is some help:gdb, the GNU debugger.

Let’s take the following buggy code, saved in the file “buggy.c”, and compiled into the executable “buggy.”

#include <stdio.h>

struct Data {
int x;

};

int
main(int argc, char *argv[])
{

struct Data *p = NULL;
printf("%d\n", p->x);

}

5

In this example, the main program dereferences the variablep before when it is NULL, which will lead to a segmentation fault.
Of course, this problem should be easy to fix by inspection, but in a more complex program, finding such a problem is not always
easy.

To prepare yourself for a debugging session, recompile yourprogram and make sure to pass the-g flag to each compile line.
This includes extra debugging information in your executable that will be useful during your debugging session. Also, don’t turn
on optimization (-O); though this may work, it may also lead to confusion during debugging.

After re-compiling with-g, you are ready to use the debugger. Fire upgdb at the command prompt as follows:

prompt> gdb buggy

This puts you inside an interactive session with the debugger. Note that you can also use the debugger to examine “core” files
that were produced during bad runs, or to attach to an already-running program; read the documentation to learn more about this.

Once inside, you may see something like this:

prompt> gdb buggy
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
[stuff deleted]
(gdb)

The first thing you might want to do is to go ahead and run the program. To do this, simply type “run” at gdb command prompt.
In this case, this is what you might see:

(gdb) run
Starting program: buggy

Program received signal SIGSEGV, Segmentation fault.
0x8048433 in main (argc=1, argv=0xbffff844) at buggy.cc:19
19 printf("%d\n", p->x);

As you can see from the example, in this case,gdb immediately pinpoints where the problem occurred; a “segmentation fault”
was generated at the line where we tried to dereferencep. This just means that we accessed some memory that we weren’tsupposed
to access. At this point, the astute programmer can examine the code, and say “aha! it must be thatp does not point to anything
valid!”, and then go ahead and fix the problem.

However, if you didn’t know what was going on, you might want to examine some variable.gdb allows you to do this
interactively during the debug session.

(gdb) print p
1 = (Data *) 0x0

By using the print primitive, we can examinep, and see both that it is a pointer to a struct of type Data, and that it is currently
set to NULL (0x0).

Finally, you can also set breakpoints within your program tohave the debugger stop the program at a certain routine. After
doing this, it is often useful to step through the execution (one line at a time), and see what is happening.

(gdb) break main
Breakpoint 1 at 0x8048426: file buggy.cc, line 17.
(gdb) run
Starting program: /homes/hacker/buggy

Breakpoint 1, main (argc=1, argv=0xbffff844) at buggy.cc:17
17 struct Data *p = NULL;
(gdb) next
19 printf("%d\n", p->x);
(gdb)

Program received signal SIGSEGV, Segmentation fault.
0x8048433 in main (argc=1, argv=0xbffff844) at buggy.cc:19
19 printf("%d\n", p->x);

6

In the example above, a breakpoint is set at the main() routine; thus, when we run the program, the debugger almost immediately
stops execution at main. At that point in the example, a “next” command is issued, which executes the next source-level command.
Both “next” and “step” are useful ways to advance through a program – read about them in the documentation for more details.2

This discussion really does not dogdb justice; it is a rich and flexible debugging tool, with many more features than can be
described in the limited space here. Read more about it on your own and become an expert in your copious spare time.

Documentation

Man Pages
To learn a lot more about all of these things, you have to do twothings: the first is to use these tools, and the second is to read
more about them on your own. One way to find out more aboutgcc, gmake, andgdb is to read their man pages; typeman gcc,
man gmake, or man gdb at your command prompt. You can also useman -k to search the man pages for keywords, though
that doesn’t always work as well as it might.

One tricky thing about man pages: typing “man XXX” may not result in the thing you want, if there is more than one thing
called XXX. For example, if you are looking for the kill() system call man page, and if you just type “man kill” at the prompt, you
will get the wrong man page(!), because there is a command-line program called kill. Man pages are divided into “sections”, and
by default, man will return the man page in the lowest sectionthat it finds, which in this case is section 1. Note that you cantell
which man page you got by looking at the top of the page: if you see “kill(2)”, you know you are in the right man page. Type “man
man” to learn more about what is stored in each of the different sections of the man pages. Also note that “man -a kill” can beused
to cycle through all of the different man pages named “kill”.

Man pages are useful for finding out a number of things. In particular, you will often want to look up what arguments to pass
to a library call, or what header files need to be included to use a library call. All of this should be available in the man page. For
example, if you look up the “open” system call, you will see:

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *path, int oflag, /* mode_t mode */...);

That tells you to include the headers “sys/types.h”, “sys/stat.h”, and “fcntl.h” in order to use the open call. It also tells you
about the parameters to pass to open, namely a string called “path”, and integer flag “oflag”, and an optional argument to specify
the mode of the file. If there were any libraries you needed to link with to use the call, it would tell you that here too.

Man pages require some effort to use effectively. They are often divided into a number of standard sections. The main body
will describe how you can pass different parameters in orderto have the function behave differently.

One particularly useful section is called the “RETURN VALUES” part of the man page, and it tells you what the function will
return under success or failure. From the “open” man page again:

RETURN VALUES
Upon successful completion, the open() function opens the
file and return a non-negative integer representing the
lowest numbered unused file descriptor. Otherwise, -1 is
returned, errno is set to indicate the error, and no files
are created or modified.

Thus, by checking what open returns, you can see if the open suceeded or not. If it didn’t, open (and many standard library
routines) will set a global variable callederrno to a value to tell you about the error. See the “ERRORS” section for more details.

Another thing I find myself doing is looking for the definitionof a structure that is not specified in the man page itself. For
example, the man page for clockgettime() has the following synopsis:

SYNOPSIS
cc [flag...] file... -lrt [library...]
#include <time.h>
int clock_gettime(clockid_t clock_id, struct timespec *tp);

2In particular, you can use the interactive “help” command while debugging withgdb.

7

One thing to note is that in the first line of the synopsis, it tells you that to use clockgettime(), you must link with the
library called “librt”, or the real-time library. Further,you can see that the time is filled into a ’struct timespec’, but the man page
does not tell you what fields that struct has! Frustrating. Thus, you must hunt for it. All include files are found under the directory
/usr/include, and thus you can use a tool like “grep” to look for it. For example, I might type “grep ’struct timespec’ /usr/include/*.h”
to look for the defintion of the structure in all files that end with “.h” in /usr/include. Unfortunately, that won’t work, because in this
case, the definition is in a file “/usr/include/sys/types32.h”. Thus, a search like this one: “grep ’struct timespec’ /usr/include/*/*.h”
would be successful. Yes, this is painful.

A better way to do this is to use a tool at your disposal, the compiler. Write a program that includes the header “time.h”, let’s
say called “main.c”. Then, instead of compiling it, use the compiler to invoke the preprocesser. The preprocessor processes all the
directives in your file, such as#define commands and#include commands. To do this, type “gcc -E main.c”. The result of
this is a C file that has all of the needed structures and prototypes in it, including the definition of the timespec struct.

Info Pages
Also quite useful in the hunt for documentation are the “infopages”, which provide much more detailed documentation on many
GNU tools. You can access the info pages by running the program info, or via emacs, the preferred editor of hackers, by
executingMeta-x info. A program likegcc has hundreds of flags, and some of them are surprisingly useful to know about.
gmake has many more features that will improve your build environment. Andgdb is quite a sophisticated debugger. Read the
man and info pages, try out features that you hadn’t tried before, and become a power user of your programming tools.

Suggested Readings
Other than the man and info pages, there are a number of usefulbooks out there. Note that a lot of this information is available for
free on-line; however, sometimes having something in book form seems to make it easier to learn. Also, always look for O’Reilly
books on topics you are interested in; I have found them to be uniformly of high quality.

• The C Programming Language, by Brian Kernighan and Dennis Ritchie. This isthe C book to have.

• Managing Projects with make, by Andrew Oram and Steve Talbott. A reasonable and short book on make.

• Debugging with GDB: The GNU Source-Level Debugger, by Richard M. Stallman, Roland H. Pesch. A little book on using
GDB.

• Advanced Programming in the UNIX Environment, by W. Richard Stevens. Stevens writes excellent books, andthis is a
must for Unix hackers. He also has an excellent set of books onTCP/IP and Sockets programming.

8

